

- 150.000 clienti in oltre 100 paesi
- Vastissimo assortimento di forni
- Uno dei più grandi dipartimenti di ricerca e sviluppo nel settore costruzioni forni
- Produzione studiata fin nel minimo dettaglio

- Servizio clienti individuale e consulenza in loco
- Rapide possibilità di assistenza remota per forni complessi
- Referenza clienti con forni o sistemi simili vicino a te
- Fornitura di pezzi di ricambio sicuri, molti pezzi di ricambio disponibili a magazzino
- Ulteriori informazioni si trovano a pagina 86

Standard consolidato di qualità e affidabilità

- Pianificazione del progetto e costruzione di impianti di processo termico su misura incl. movimentazione dei materiali e sistemi di caricamento.
- Controlli innovativi e tecnologia di automazione, adattata alle esigenze del cliente
- Sistemi di forni molto affidabili e durevoli
- Centro prove per clienti a garanzia dei processi

Esperienza nel trattamento termico

- Tecnologia per processi termici
- Additive manufacturing
- Materiali avanzati
- Fibre ottiche/vetro
- Fonderia
- Laboratorio
- Dentale
- Arts & Crafts

Indice

Additive Manufacturing
Additive Manufacturing
Forni a storte
Forni a storte a pareti calde fino a 1100 °C
Essiccatori ad armadio e forni a convezione fino a 850 °C
Forni a camera a convezione NA 120/45 - N 500/85 e cassette di gasaggio

Forni a camera con isolamento in pietra o isolamento in fibra

Forni a camera LH 15/ LH 216/	46
Cassette di gasaggio e piastre di caricamento per modelli	
LH 15/ LH 216/	48
Forni a camera con estrazione a cassetto NW 150 - NW 1000	50
Cassette di gasaggio e campane di gasaggio per forni a camera	
NW 150 - NW 1000	51
Forni a camera N 7/H - N 641/13	52
Cassette di gasaggio e piastre di caricamento per modelli	
N 7/H - N 641/13	55
Forcelle di caricamento	57

Equipaggiamenti aggiuntivi Forni a camera e a convezione

Sistemi di gasaggio	. 60
Gruppo pompa per vuoto	. 61
Tavoli di raffreddamento e dispositivi di caricamento	. 62

Forni per Debinding e Sinterizzazione fino a 1800 °C

Forni di incenerimento con depurazione integrata dei gas di scarico	66
Forni ad alta temperatura con elementi riscaldanti in MoSi ₂ ; fino a	
1800 °C	68

Controllo dei processi e documentazione

Uniformità della temperatura e precisione del sistema	72
AMS2750F, NADCAP, CQI-9	73
Nabertherm controller serie 500	76
MyNabertherm app	78
Funzioni dei controller standard	80
Memorizzazione dei dati di processo e immissione dei dati tramite PC	81
PLC Controls	83
Archiviazione dei dati di processo	84
Nahartharm Cantral Cantar NCC	95

Additive Manufactoring

Additive manufacturing consente di convertire direttamente files di progettazione in oggetti finiti completamente funzionali. Con le stampanti 3D, partendo da una massa di metallo, plastica, ceramica, vetro, sabbia o altri materiali, gli oggetti vengono creati strato dopo strato fino a raggiungere la loro forma definitiva.

A seconda del materiale, gli strati vengono tra loro collegati mediante un sistema legante o con la tecnologia laser.

Molti metodi di Additive Manufacturing richiedono un successivo trattamento termico dei componenti prodotti. I requisiti che i forni per il trattamento termico devono soddisfare dipendono dal materiale del componente, dalla temperatura di lavoro, dall'atmosfera presente nel forno e, naturalmente, dal processo di produzione additiva.

Oltre alla scelta del forno giusto e dei parametri di processo corretti, anche i processi a monte del trattamento termico incidono sul risultato complessivo. Un criterio decisivo per una buona qualità superficiale è tra l'altro anche la pulizia a regola d'arte dei componenti prima del trattamento termico.

Questo è particolarmente importante anche per i processi che vengono realizzati sottovuoto o in forni che richiedono un basso contenuto di ossigeno residuo. Piccole perdite e impurità possono portare a un risultato insufficiente. Per questo motivo è molto importante effettuare regolarmente la pulizia e la manutenzione del forno.

Gruppo di forni	Pagina
Additive Manufactoring	6
Quale forno per quale processo?	10
Sistemi di essiccazione, deceraggio e sinterizzazione di componenti con leganti	12
Concetti di sicurezza per processi che generano un'atmosfera infiammabile	14

Additive Manufactoring

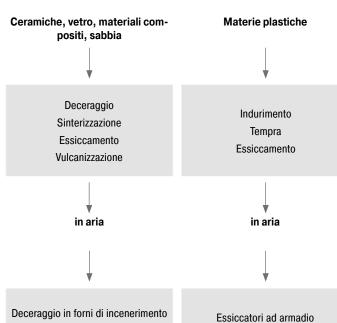
Forno a storta NR 150/11 per la distensione di componenti in metallo dopo la stampa 3D

Essiccatore ad armadio TR 240 per l'essiccamento delle polveri

Essiccatore a camera KTR 2000 per polimerizzazione del legante dopo la stampa 3D

Forno tubolare compatto per la sinterizzazione o la distensione dopo la stampa 3D in gas inerte o sotto vuoto

HT 160/17 DB200 per il deceraggio e la sinterizzazione delle ceramiche dopo la stampa 3D


Nella produzione additiva si fa distinzione tra metodi contenenti leganti e metodi senza leganti. A seconda del metodo di produzione, per il successivo trattamento termico si utilizzano tipi di forni diversi.

Forni a camera con cassetta di gasaggio

Forni a storte a pareti calde

Forni a storte a pareti fredde

Deceraggio in forni a camera con circolazione dell'aria Sinterizzazione in forni a camera Deceraggio e sinterizzazione in forni combinati Forni per microfusione (cera persa)

Vedi anche sistemi per essiccamento, deceraggio, pulizia termica e microfusione nel catalogo Materiali avanzati Vedi anche Sistemi per essiccamento, deceraggio, pulizia termica e microfusione nel catalogo Materiali avanzati così come il catalogo Tecnologia per Processi Termici I

Essiccatoi a camera

Forni a camera a convezione

Sistemi senza legante

Nella produzione additiva senza leganti i componenti vengono in genere fabbricati con il procedimento di fusione laser a letto di polvere su una piattaforma di costruzione. Nel frattempo sul mercato si sono affermati anche altri metodi di produzione che richiedono il trattamento termico dopo il processo di fabbricazione.

Nelle tabelle seguenti figurano materiali e piattaforme di costruzione normalmente disponibili sul mercato per sistemi laser con proposte relative alle dimensioni del forno per la temperatura e l'atmosfera necessarie nel forno.

Componenti in alluminio

Il trattamento termico dell'alluminio si svolge in genere all'aria, a temperature comprese tra 150 °C e 450 °C.

Data l'ottima uniformità della temperatura, i forni a camera a convezione sono indicati per processi come ad esempio il rinvestimento, l'invecchiamento artificiale, la distensione o il preriscaldamento.

Componente stampato in alluminio, sottoposto a trattamento termico nel modello N 250/85 HA (fabbricante CETIM CERTEC su piattaforma SUPCHAD)

Esempi per max.	Per i forni a camera a convezione vedi pagina 42
Dimensioni piattaforma di costruzione	fino a 450 °C1
210 x 210 mm	NA 30/45
280 x 280 mm	NA 60/45
360 x 360 mm	NA 120/45
480 x 480 mm	NA 250/45
600 x 600 mm	NA 500/45

 $^{1}\text{Disponibile}$ anche per 650 $^{\circ}\text{C}$ e 850 $^{\circ}\text{C}$

Forno a camera a convezione NA 250/45 per trattamento termico all'aria

Componenti in acciai inox o titanio

Il trattamento termico di alcuni acciai inox o del titanio si svolge in genere a temperature inferiori a 850 °C in atmosfera di gas inerte.

Utilizzando una cassetta di gasaggio con corrispondente alimentazione di gas di processo è possibile modificare un forno standard in forno a gas inerte. A seconda del gas di processo, della velocità di prelavaggio, della velocità di lavaggio e dello stato della cassetta è possibile ottenere contenuti di ossigeno residuo inferiori a 100 ppm.

I forni a camera a convezione con cassetta di gasaggio di seguito indicati hanno un campo di temperatura compreso tra 150 °C e 850 °C. Se la cassetta di gasaggio viene rimossa dal forno, è possibile sottoporre a trattamento termico all'aria anche componenti in alluminio o acciaio.

Esempi per max.	Per i forni a camera a convezione vedi pagina 42	
Dimensioni piattaforma di costruzione	fino a 850 °C con cassetta di gasaggio	
100 x 100 mm	N 30/85 HA	
200 x 200 mm	N 60/85 HA	
280 x 280 mm	N 120/85 HA	
400 x 400 mm	N250/85 HA	
550 x 550 mm	N500/85 HA	

I modelli indicati nella tabella rappresentano solo alcuni esempi.

Forno a camera a convezione N 250/85 HA con cassetta di gasaggio per trattamenti termici in atmosfera di gas inerte

Forno a storte a pareti calde NRA 150/09 per trattamenti termici in atmosfera di gas inerte.

Forno a storte a pareti fredde VHT 100/12-MO per processi in alto vuoto

LH 216/12 con raffreddamento controllato, sistema di gasaggio e sistema di carica

Nel caso di materiali sensibili, come ad esempio il titanio, è possibile che, a causa del contenuto di ossigeno residuo nella cassetta di gasaggio, si verifichi un'ossidazione del componente.

In questi casi vengono impiegati forni a storte a pareti calde con una temperatura massima di 900 °C o 1100 °C. Questi forni a storte a tenuta di gas sono particolarmente indicati per processi di trattamento termico che richiedono un'atmosfera definita in gas inerte o di reazione. Questi modelli compatti possono essere progettati anche per il trattamento termico sottovuoto fino a 600 °C. Con questi forni si riduce notevolmente il rischio di ossidazione del componente.

Esempi per max.	Forni a storte a pareti calde	
Dimensioni piattaforma di costruzione	vedi pagina 18	
200 x 200 mm	NR 20/11 e NR(A) 17/	
300 x 300 mm	NR 80/11 e NR(A) 50/	
300 x 500 mm	NR 80/11 e NR(A) 75/	
400 x 400 mm	NR 160/11 e NR(A) 150/	
400 x 800 mm	NR 160/11 e NR(A) 300/	

Tiranti in titanio dopo il trattamento termico nel NR 50/11 in atmosfera di argon

Per i processi in gas inerte oltre 1100 °C o sottovuoto oltre 600 °C si utilizzano i forni a storte a pareti fredde.

Esempi per	Forni a storte a pareti fredde ¹
Dimensioni piattaforma di costruzione	vedi pagina 24
100 x 100 mm	VHT 8/
250 x 250 mm	VHT 40/
350 x 350 mm	VHT 70/
400 x 400 mm	VHT 100/

¹Disponibili con diverse temperature massime della camera del forno e riscaldatori di materiali diversi

Componenti in Inconel o cromo-cobalto

Il trattamento termico di materiali come Inconel e cromo-cobalto si svolge in genere a temperature superiori a 850 °C fino a temperature di 1100 °C - 1150 °C. Per questi processi è possibile utilizzare diversi tipi di forno. In molti casi bastano i forni a camera della serie LH .. o NW .. con cassetta di gasaggio inserita, che offrono un ottimo rapporto qualità/prezzo. Entrambi i gruppi di forni sono indicati per temperature comprese tra 800 °C e 1100 °C.

Esempi per	Per i forni a camera vedi pagina 46
Dimensioni piattaforma di costru-	fino a 1100 °C con cassetta di gasaggio
zione	
100 x 100 mm	LH 30/12
250 x 250 mm	LH 120/12
400 x 400 mm	LH 216/12
420 x 520 mm	NW 440
400 x 800 mm	NW 660

Sistemi con legante

Nella stampa a polvere si utilizzano leganti organici che evaporano durante il trattamento termico. I componenti possono essere ad esempio in ceramica, metallo, vetro o sabbia. In base alla quantità di evaporazione si utilizzano per il deceraggio e la sinterizzazione forni con sistemi di sicurezza graduali.

Alle pagine 10 - 11 i vari sistemi vengono rappresentati in una matrice decisionale, la spiegazione è contenuta nelle pagine successive.

Dimensioni piattaforma di costruzione	Forni di deceraggio ¹	Forni di sinterizzazione ²
fino a (largh. x prof. x h)	vedi il catalogo Materiali Avanzati	vedi il catalogo Materiali Avanzati
100 x 100 x 100 mm	L 9/11 BO	LHT 4/16
200 x 200 x 150 mm	L 9/11 BO	HT 40/16
300 x 400 x 150 mm	L 40/11 BO	HT 64/17

¹Rispettare i valori caratteristici per deceraggio come quantità organica massima e tasso di evaporazione

Per proteggere dall'ossidazione i componenti metallici che vengono stampati con un sistema contenente solventi, entrambi i processi di deceraggio e sinterizzazione vengono realizzati in assenza di ossigeno.

In base al materiale e al sistema di legante, il deceraggio si svolge in un gas inerte non infiammabile (IDB), in idrogeno (H₂) o anche con processo catalitico in una miscela di acido nitrico e azoto. Per garantire processi sicuri si utilizzano sistemi di sicurezza specifici.

La tabella mostra esempi di forni che possono essere equipaggiati di una tecnica di sicurezza adeguata. Il forno a storte a pareti calde funge da forno di deceraggio mentre il forno a storte a pareti fredde è utilizzato come forno di sinterizzazione. A seconda dell'impiego è a volte possibile utilizzare un forno per entrambi i processi.

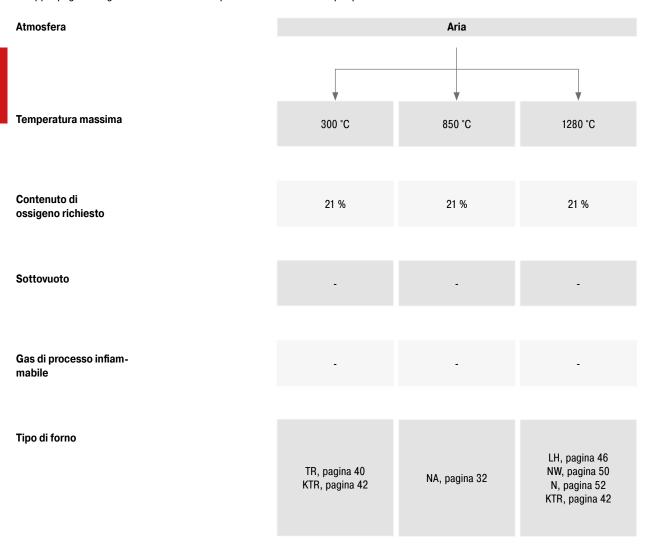
Dimensioni piattaforma di costru- zione	Forno a storte a pareti calde ¹	Forno a storte a pareti fredde ^{2, 3}
fino a (largh. x prof. x h)	vedi pagina 18	vedi pagina 24
100 x 180 x 120 mm	NRA 17/	VHT 8/
180 x 320 x 170 mm	NRA 17/	VHT 25/
230 x 400 x 220 mm	NRA 50/	VHT 40/
300 x 450 x 300 mm	NRA 50/	VHT 70/
400 x 480 x 400 mm	NRA 150/	VHT 100/

¹Per i sistemi di sicurezza vedi pag. 16 e 19, per le temperature massime della camera del forno vedi pag. 14

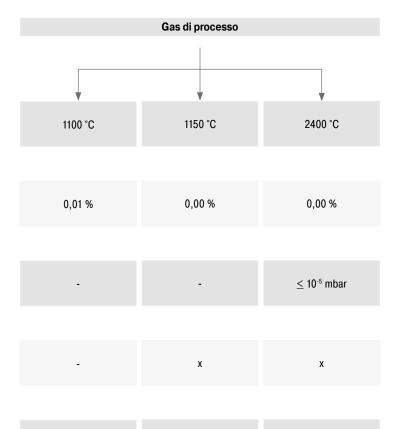
Forno a muffola L 40/11 BO con sistema di sicurezza passivo e postcombustione integrata per il deceraggio termico all'aria

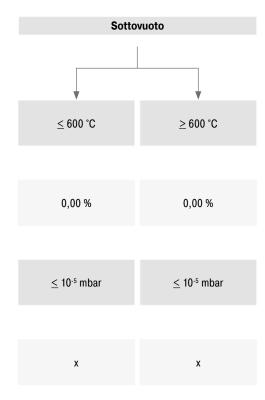
Forno ad alta temperatura HT 64/17 DB100 con sistema di sicurezza passivo per il deceraggio e la sinterizzazione all'aria

Forno a storte NRA 40/02 CDB con armadio per la pompa


² I forni sono disponibili con diverse temperature massime della camera del forno

²Disponibili con diverse temperature massime della camera del forno e riscaldatori di materiali diversi


³Con cassetta di processo per il deceraggio residuo


Quale forno per quale processo?

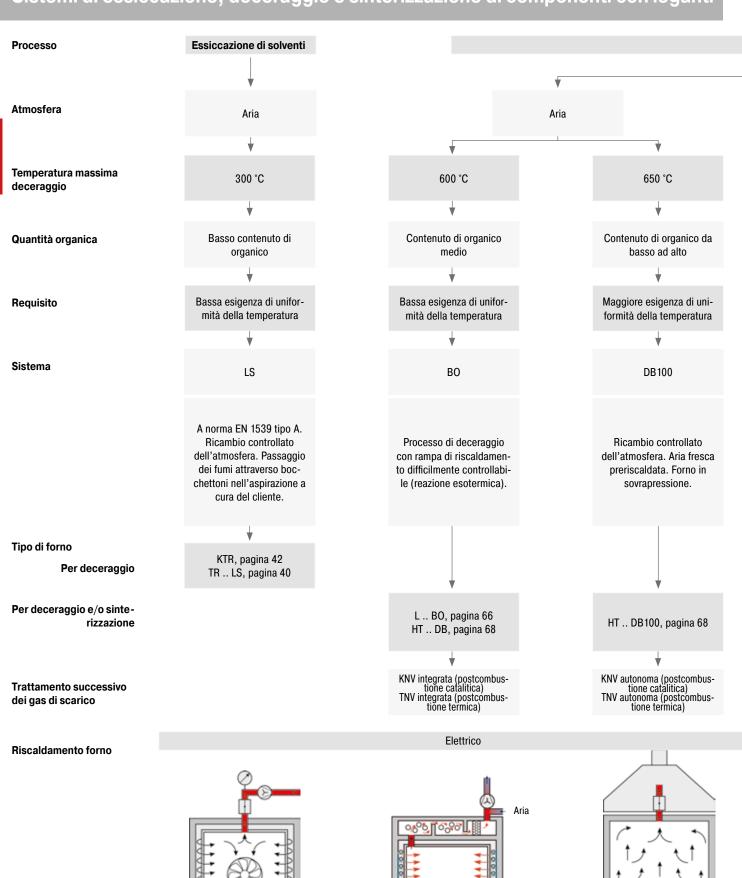
Le due doppie pagine seguenti forniscono una panoramica su quali forni possono essere utilizzati per la produzione additiva e per quali processi. Su questa doppia pagina vengono descritti i forni che possono essere utilizzati per processi che non rilasciano sostanze infiammabili.

Cassetta di gasaggio LH, pagina 46 NW, pagina 50 N, pagina 52 NA*, pagina 32

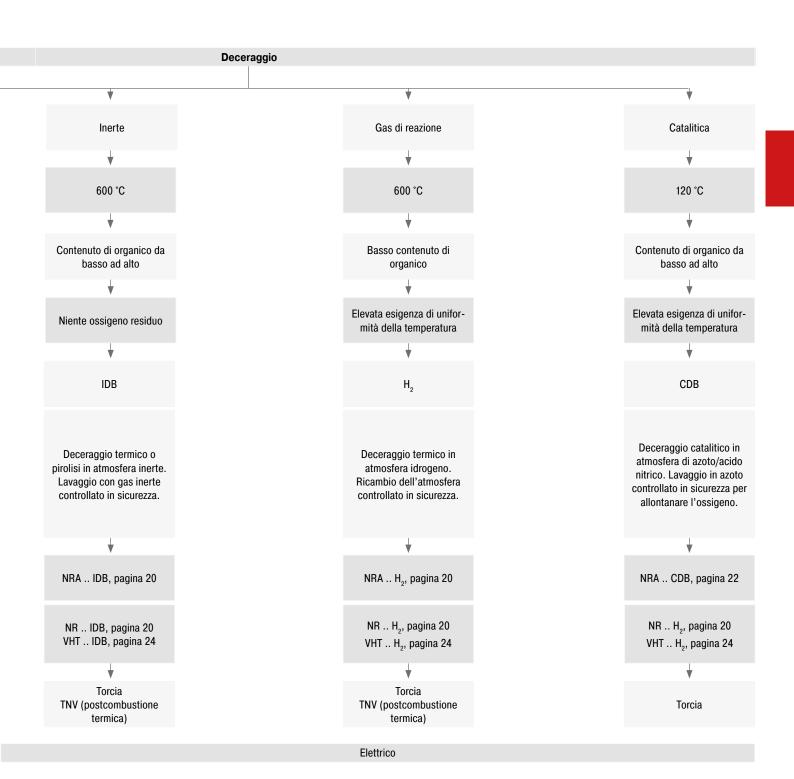
NR(A), pagina 18

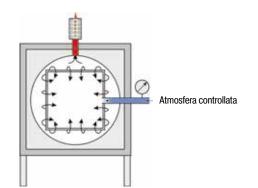
VHT, pagina 24

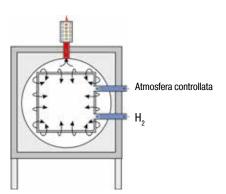
Elettrico

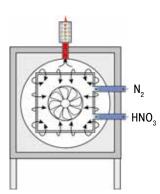


Forno a storte a pareti fredde VHT 100/12-MO per processi in alto vuoto




Impianto di bonifica semiautomatico con forno a storte NR 50/11 e bagno di raffreddamento ad acqua su un sistema a rotaie


Sistemi di essiccazione, deceraggio e sinterizzazione di componenti con leganti



Concetti di sicurezza per processi che generano un'atmosfera infiammabile

Per il deceraggio di ceramiche tecniche ad es. vengono rilasciati idrocarburi che ad una certa concentrazione nella camera del forno producono una miscela infiammabile. Nabertherm offre pacchetti di sicurezza su misura, attivi e passivi, a seconda del processo e della quantità di legante, che permettono un funzionamento sicuro del forno.

I. Deceraggio in aria

Deceraggio in forni riscaldati elettricamente

Per il deceraggio in aria con riscaldamento elettrico, Nabertherm offre diversi pacchetti di deceraggio per esigenze procedurali differenti. Tutti i pacchetti di deceraggio dispongono di una tecnica di sicurezza professionale integrata. A Seconda delle specifiche esigenze, è possibile scegliere tra un sistema di sicurezza attivo o passivo. I concetti di sicurezza passivi si differenziano in funzione della quantità di materiale organico, sicurezza del processo e distribuzione della temperatura.

Sistema di sicurezza

Generalmente, i forni di deceraggio Nabertherm sono dotati di un sistema di sicurezza passivo che prevede una lenta evaporazione di sostanze infiammabili. I forni riscaldati elettricamente lavorano secondo il principio di rarefazione mediante apporto di aria fresca, per ridurre le emissioni gassose della carica nel forno creando un'atmosfera non infiammabile. La quantità di organico e la curva termica devono essere definite dal cliente in modo che il tasso di evaporazione massimo consentito non venga superato. La responsabilità del funzionamento del sistema di sicurezza è dell'utente. Il pacchetto di sicurezza DB del forno sorveglia tutti i parametri procedurali importanti e in caso di guasto attiva un apposito programma di emergenza. In pratica il sistema di sicurezza passivo si è affermato per via del buon rapporto qualità/prezzo. Secondo le esigenze procedurali vengono offerti i seguenti pacchetti di dotazioni.

Pacchetto di deceraggio DB10 per forni a convezione (riscaldamento a convezione) fino a 450 °C

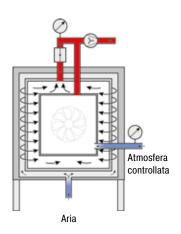
Il pacchetto di deceraggio DB10 è l'esecuzione base per il processo di deceraggio sicuro di forni a convezione fino a 450 °C. Il forno è dotato di un ventilatore dei gas di scarico, attraverso il quale una quantità d'aria definita viene aspirata dal forno in modo che, al contempo, nel forno arrivi la quantità di aria fresca necessaria. Il forno viene fatto funzionare in depressione. Questa impedisce la fuoriuscita indefinita di prodotti di evaporazione.

Aria

Aria

Pacchetto di deceraggio per forni da laboratorio

I forni di incenerimento dispongono di un sistema di sicurezza passivo e un trattamento successivo integrato dei gas di scarico. Un ventilatore per i gas di scarico aspira i fumi dal forno alimentando al tempo stesso aria fresca all'atmosfera del forno, in modo da avere sempre una quantità di ossigeno sufficiente per il processo di incenerimento. L'aria di alimentazione scorre parallelamente al riscaldamento del forno e viene preriscaldata, in modo da assicurare una buona uniformità della temperatura. I gas di scarico generati vengono convogliati dalla camera del forno al post-combustore integrato, dove saranno inceneriti e depurati cataliticamente. Subito dopo il processo di incenerimento (fino a max. 600 °C) può seguire un processo fino a max. 1100 °C.

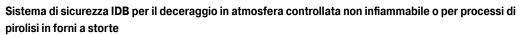


II. Sistema di sicurezza EN 1539 (NFPA 86) per l'essiccazione di solventi in essiccatoi

La tecnica di sicurezza di forni ed essiccatoi per processi nei quali solventi o altre sostanze infiammabili vengono liberati ed evaporati in modo relativamente veloce, in tutta Europa viene regolamentata nella EN 1539 (oppure NFPA 86 negli USA).

Impieghi tipici sono l'essiccazione di vernici per stampi, rivestimenti superficiali e resine impregnanti. Oltre che dall'industria chimica, gli utenti provengono anche da molti altri settori come l'industria automobilistica, industria elettrotecnica o anche quella della lavorazione di plastica e metallo.

Il sistema di sicurezza è progettato per evitare la formazione di miscele esplosive mediante un ricambio continuo dell'aria nell'intera camera.



III. Deceraggio o pirolisi in atmosfera controllata o reattiva non infiammabile o infiammabile

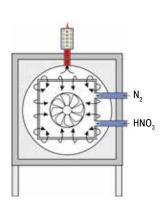
Sistema di sicurezza IDB per il deceraggio in atmosfera controllata non infiammabile a basso contenuto di ossigeno residuo nella cassetta di gasaggio

Per processi di deceraggio che devono avvenire in atmosfera controllata, per i quali consentita una piccola percentuale di ossigeno residuo, è disponibile il sistema di sicurezza IDB passivo con atmosfera inerte in una cassetta di gasaggio. La tecnologia del forno in abbinamento con una cassetta di gasaggio in acciaio inox refrattario convince per l'ottimo rapporto qualità/prezzo.

Mediante un prelavaggio con gas intere e un lavaggio di mantenimento monitorati, si assicura che nella cassetta di gasaggio non venga superato un contenuto di ossigeno residuo del 3 %. Il cliente deve controllare questo valore limite con misurazioni regolari.

I forni a storte delle serie NR(A) e SR(A) sono ideali per il deceraggio in atmosfera controllata non infiammabile o per processi di pirolisi. Nell'esecuzione IDB, i forni vengono lavati con un gas inerte. I gas di scarico vengono bruciati in una relativa torcia. Sia il lavaggio sia la funzione torcia sono monitorati per garantire un funzionamento sicuro.

Gas protettivo H₂


Gas protettivo

Sistema di sicurezza per il trattamento termico in atmosfera di processo infiammabile

In caso di utilizzo di gas di processo infiammabili, come p.es. idrogeno, il forno a storte viene inoltre dotato e fornito con la tecnica di sicurezza necessaria. Come sensori rilevanti per la sicurezza vengono usati solo elementi con relativa certificazione. Il forno viene regolato con un sistema di controllo PLC a prova di errore (S7-300/Controllo di sicurezza).

Pacchetto di sicurezza CDB per il deceraggio catalitico con acido nitrico

Il sistema di sicurezza impedisce la generazione di miscele gassose esplosive durante il funzionamento con acido nitrico. A tal fine, le storte a prova di gas vengono lavate automaticamente con un flusso di azoto controllato e l'ossigeno dell'aria viene rimosso prima dell'immissione dell'acido nitrico. Durante il deceraggio, il rapporto di miscelazione controllato tra azoto e acido evita un sovradosaggio di acido e quindi un'atmosfera esplosiva.

Forni a storte per processi con atmosfera definita di gas di processo o sotto vuoto, ad esempio ricottura di distensione.

Esclusivo uso di materiali isolanti senza categorizzazione in conformità al Regolamento CE n. 1272/2008 (CLP). Questo significa esplicitamente che non viene utilizzata lana di silicato di alluminio, conosciuta anche come "fibra ceramica refrattaria" (RCF) classificata come possibile cancerogeno.

NTLog Basic per controller Nabertherm: registrazione dei dati di processo con USB flash drive

Applicazione definita entro i limiti delle istruzioni per l'uso

Disponibile come dotazione aggiuntiva: controllo dei processi e documentazione tramite pacchetto software VCD per il monitoraggio, la documentazione e il controllo

Forni a storte a pareti calde fino a 1100 °C

Questi forni a storta a tenuta di gas sono dotati di riscaldamento diretto o indiretto in base alla temperatura. Essi sono particolarmente indicati per molteplici trattamenti termici che richiedono un'atmosfera definita di gas inerte o anche di reazione in una leggera sovrapressione. Questi modelli compatti possono essere progettati anche per il trattamento termico sottovuoto fino a 600 °C. Il vano forno è realizzato con una storta a tenuta di gas dotata di un raffreddamento ad acqua nella zona della porta per proteggere la speciale guarnizione. Equipaggiati con la relativa tecnica di sicurezza, i forni a storta sono adatti anche per applicazioni con gas di reazione quali ad esempio l'idrogeno oppure, se realizzati con il pacchetto IDB, per il deceraggio inerte o per processi di pirolisi.

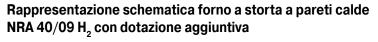
A seconda del campo di temperatura vengono impiegati diversi modelli:

Forno a storta NR 80/11

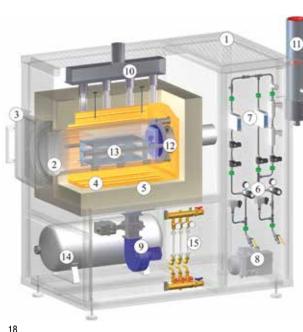
Modelli NRA ../06 con Tmax 600 °C

- Elementi riscaldanti disposti all'interno della storta
- Storta in 1.4571 (X6CrNiMoTi 17-12-2)
- Ventilatore di convezione e cassa di conduzione per un flusso di gas direzionato
- Isolamento in lana minerale
- Regolazione vano forno con misurazione della temperatura all'interno della storta

Modelli NRA ../09 ⊕ con Tmax 900 °C


Realizzazione come i modelli NRA ../06 con le seguenti differenze:

- Riscaldamento esterno con elementi riscaldanti disposti intorno alla storta
- Storta in 1.4828 (X15CrNiSi 20-12)
- Struttura isolante in mattoni refrattari leggeri a più strati e isolamento microporoso a pannelli
- Regolazione vano forno con misurazione della temperatura al di fuori della storta


Modelli NR ../11 con Tmax 1100 °C

Realizzazione come i modelli NRA ../09 con le seguenti differenze:

- Storta in 1.4841 (X15CrNiSi 25-21)
- Senza convezione dell'atmosfera 🖉 e cassa di conduzione
- Squadre di appoggio saldate

- 1 Corpo con impianto di distribuzione integrato
- 2 Storta
- 3 Porta con chiusura a baionetta (dotazione aggiuntiva)
- 4 Riscaldamento
- 5 Isolamento
- 6 Sistema di gestione del gas
- 8 Pompa per vuoto (dotazione aggiuntiva)
- 7 Regolatore di portata MFC (dotazione aggiuntiva)
- 9 Ventola di raffreddamento indiretto (dotazione aggiuntiva)
- 10 Uscita raffreddamento indiretto (dotazione aggiuntiva)
- 11 Bruciatore a torcia (Dotazione aggiuntiva Pacchetto di sicurezza H_a)
- 12 Ventola di circolazione gas (modelli NRA)
- 13 Telaio di caricamento (su richiesta)
- 14 Serbatoio di riempimento d'emergenza (Dotazione aggiuntiva Pacchetto di sicurezza H₂)
- 15 Sistema ad acqua di raffreddamento aperto

Forno a storte NRA 40/09

Forno a storte NR 20/11 con porta ad apertura parallela

- Versione compatta con regolazione integrata e gasaggio (fino ai forni a storte NR(A) 700/..)
- Porta girevole con cerniera a destra
- Sistema aperto di raffreddamento ad acqua
- Controllo suddiviso in diverse zone di riscaldamento
- Uniformità della temperatura secondo DIN 17052-1 fino a +/- 8 °C nello spazio utile vuoto vedi pagina 72
- Sistema di gasaggio per un gas inerte non infiammabile o reattivo, con flussometro e valvola magnetica
- Controller P570

Dotazione aggiuntiva

- Integrazione per altri gas incombustibili
- Regolatore di portata MFC
- Gestione dei processi H3700, H1700 (comando PLC) incl. modulo di assistenza
- Regolazione della temperatura realizzata come regolazione carica, con misurazione della temperatura dentro e fuori dalla storta
- Raffreddamento diretto e/o indiretto
- Scambiatore di calore con sistema di raffreddamento a circuito chiuso per il raffreddamento della porta
- Sensore ossigeno e sensore del punto di rugiada
- Porta ad apertura parallela o chiusura elettrica a baionetta
- Storta in 2.4633 per Tmax 1150 °C
- Impianto di distribuzione esterno o senza raffreddamento dell'armadio elettrico
- Piano di caricamento o telai di caricamento personalizzati
- Ottimizzazione dell'uniformità della temperatura secondo DIN 17052 oppure AMS2750F fino a +/- 5 °C nello spazio utile vuoto vedi pagina 72

	NRA/06	NRA/09	NR/11
Tmax in °C	600	900	1100¹
Convezione dell'atmosfera	✓	✓	-
Funzionamento con gas inerte non infiammabile	✓	✓	✓
Funzionamento con aria/ossigeno ²	✓	✓	✓
Funzionamento con gas infiammabile ³	√ 5	✓	✓
Deceraggio inerte IDB ³	✓	✓	✓
Basso vuoto ≤ 10 mbar ⁴	✓	✓	✓
Vuoto fine > 10 ⁻³ mbar ⁴	✓	✓	✓
Alto vuoto < 10 ⁻⁴ mbar ⁴	√ 5	✓	✓
Riscaldamento delle storte	esterno/interno ⁶	esterno	esterno

¹Fino a 1150 °C, con storte in materiale 2.4633 senza convezione dell'atmosfera

⁴Funzionamento sottovuoto fino a 600 °C; 650 °C con storte in materiale 2.4633 senza convezione dell'atmosfera ⁵Solo se riscaldato all'esterno ⁶Disponibile solo dalla misura NRA 300/06

Modello	Dime	ensioni esterne¹ ir	n mm	Dimensio	oni dello spazio u	tile in mm	Volumi utili	Potenza ¹
	LARGH.	PROF.	Н	largh.	prof.	h	in I	allacciata in kW*
NR(A) 20/	1100 ²	1600	1700	225	400	225	20	34
NR(A) 40/	1200 ²	1600	1900	325	400	325	40	34
NR(A) 80/	1200 ²	2000	1900	325	750	325	80	44
NR(A) 100/	1400 ²	1800	2100	450	500	450	100	64
NR(A) 160/	1400 ²	2100	2100	450	800	450	160	74
NR(A) 300/	2200	3100	2600	590	900	590	300	157
NR(A) 400/	2200	3400	2600	590	1200	590	400	187
NR(A) 500/	2300 ³	3300	2700	720	1000	720	500	217
NR(A) 700/	2300 ³	3500	2700	720	1350	720	700	287
NR(A) 1000/	2300 ³	3600	2800	870	1350	870	1000	307

¹Dimensioni esterne e potenza allacciata dei modelli NR ../11

²Maggiore usura delle storte e dei componenti ³Solo insieme al relativo pacchetto di sicurezza

²Dimensioni esterne più impianto di distribuzione separato per pacchetto di gasaggio per gas infiammabili o comando PLC

^{*}Per le indicazioni sulla tensione di alimentazione vedi pagina 80 ³Dimensioni esterne più impianto di distribuzione separato

Forno a storta NRA 300/09 H₂ per il trattamento termico con idrogeno

Forno a storta NRA 400/03 IDB con sistema post-bruciatore termico

Forno a storte NR 300/08 per il trattamento in alto vuoto

Versione H, per l'utilizzo con gas di processo infiammabili

Per l'utilizzo di gas di processo infiammabili, come ad es. idrogeno a partire dalla temperatura ambiente, i forni vengono realizzati con un pacchetto di sicurezza. Come sensori rilevanti per la sicurezza vengono utilizzati solo componenti di comprovata efficacia con opportuna certificazione.

Versione standard

- Sistema di sicurezza per l'impiego di gas infiammabili
- Alimentazione di gas infiammabile di processo con sovrapressione regolata di 50 mbar relativi
- Gestione dei processi H3700 con comando PLC per l'inserimento dei dati
- Monitoraggio di tutti i valori rilevanti per la sicurezza attraverso un comando PLC fail safe
- Elettrovalvole ridondanti per l'idrogeno
- Pressioni all'ingresso monitorate per tutti i gas di processo
- Bypass per il lavaggio sicuro del vano forno con gas inerte
- Torcia per la postcombustione dei gas di scarico
- Serbatoio di immissione di emergenza per il lavaggio del forno in caso di guasto

Versione IDB per il deceraggio in gas inerti non infiammabili

Per il deceraggio con gas inerti non infiammabili o per processi di pirolisi.

Versione standard

- Sistema di sicurezza per il deceraggio inerte e processi di pirolisi
- Gestione del processo con sovrapressione
- Controllo di processo H1700 con PLC controls e touch panel grafico per immissione dati
- Monitoraggio di tutti i valori rilevanti per la sicurezza attraverso un comando PLC fail safe
- Monitoraggio della pressione di ingresso del gas di processo
- Bypass per il lavaggio sicuro del vano forno con gas inerte
- Postcombustione termica dei gas di scarico

Esecuzione per il funzionamento ad alto vuoto

Per i processi che si svolgono ad alto vuoto fino a 600 °C, i forni sono provvisti di apposita tecnologia.

Versione standard

- Controllo di processo H1700 con PLC controls
- Pompa turbomolecolare con pompa di prevuoto per vuoto finale di < 10⁻⁵ mbar nel forno freddo
- Attacco gas di processo con gas inerte o aria compressa per riempimento della camera del forno al termine del processo

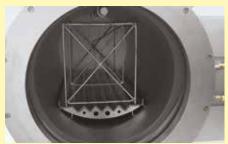
Fornos a storta a pareti calde NR 1000/11 in produzione

Forno a storta a pareti calde NRA 3300/06 con apertura porta automatica per l'integrazione in un impianto di bonifica completamente automatico

Impianto di bonifica semiautomatico con forno a storte NR 50/11 e bagno di raffreddamento ad acqua su un sistema a rotaie

Soluzioni per applicazioni specifiche del cliente

Grazie all'elevato grado di flessibilità ed innovazione Nabertherm offre la soluzione ottimale per applicazioni specifiche del cliente.


Sulla base dei nostri modelli base elaboriamo anche varianti personalizzate integrabili in impianti di processo di primaria importanza. Le soluzioni presentate sulla presente pagina rappresentano soltanto una parte delle possibilità realizzabili. Dal lavoro in atmosfera sottovuoto oppure sotto gas inerte attraverso tecniche di regolazione ed automazione innovative fino alle più svariate temperature, dimensioni, lunghezze e proprietà dei forni a storte – troviamo la soluzione adatta per l'ottimizzazione del processo.

Forno a storta a pareti calde NRA 1700/06 con telaio di caricamento per l'installazione in camera grigia con porta di caricamento in camera bianca per il trattamento termico del vetro in gas inerte

Chiusura elettrica a baionetta

Piano di caricamento e telaio di misura TUS per forno a storte NR 20/11

Sistema di gasaggio con regolatore di portata

Forni a storte, per il deceraggio catalitico anche come forni combi per deceraggio catalitico o termico

I forni a storta NRA 40/02 CDB e NRA 150/02 CDB sono stati appositamente sviluppati per il deceraggio catalitico di pezzi creati ad iniezione di polveri in ceramica e/o metallici. Sono equipaggiati con una storta a tenuta di gas, riscaldata internamente e circolazione gas, per il funzionamento a convezione. Durante il deceraggio catalitico il legante con poliacetale (POM) si decompone chimicamente nel forno per l'azione dell'acido nitrico, viene espulso dal forno attraverso l'azoto che agisce come gas conduttore e viene bruciato in una torcia per i gas di scarico. Entrambi i forni a storte dispongono di un ampio sistema di sicurezza per la tutela dell'operatore e dell'ambiente.

Realizzato come forno combinato serie CTDB, il forno a storta può essere utilizzato sia per il deceraggio catalitico o termico incl. pre-sinterizzazione se necessario e possibile. Le parti presinterizzate possono essere facilmente trasferite nel forno di sinterizzazione. Il forno di sinterizzazione rimane pulito dal momento che nessun residuo di legante è più presente.

Forno a storte NRA 40/02 CDB con armadio per la pompa acida

Pompa dosatrice per l'acido nitrico

Storta con riscaldamento interno

Versione standard

- Storta in acciaio inossidabile 1.4571 resistente all'acido con grande porta orientabile
- Riscaldamento da quattro lati all'interno della storta attraverso radiatori a tubi/ acciaio al cromo per una buona uniformità della temperatura
- Convezione orizzontale del gas per una distribuzione uniforme dell'atmosfera di processo
- Pompa dosatrice acido e contenitore d'acido del cliente integrati nel telaio del forno
- Torcia riscaldata a gas con monitoraggio fiamma
- Ampio sistema di sicurezza con PLC di sicurezza ridondante per un funzionamento sicuro con l'acido nitrico
- Grande controllo dei processi grafico H3700 per l'immissione dei dati e la visualizzazione del processo
- Serbatoio di emergenza in caso di errore
- Applicazione definita entro i limiti delle istruzioni per l'uso

Versione NRA..CDB

- Tmax 200 °C
- Sistema di fornitura gas automatico per l'azoto con flussometro massico
- Quantità di acido regolabili e volume di gasaggio adeguato di conseguenza

Versioni NRA... CTDB

Disponibile per 600 °C e 900 °C con convezione dell'atmosfera

Dotazione aggiuntiva

- Bilancia per il contenitore di acido nitrico collegata al PLC per monitorare il consumo di acido e visualizzare il livello nel contenitore (NRA 150/02 CDB)
- Carrello elevatore per un caricamento facile del forno
- Armadio per pompa acida
- Controllo dei processi e documentazione tramite Nabertherm Control-Center
 NCC per il monitoraggio, la documentazione e il controllo vedi pagina 76

Modello	Tmax	Dimens	ioni intern	e in mm	Volume	Dimensio	oni estern	e³ in mm	Potenza termica	Allacciamento	Peso	Quantità di acido	Azoto
	°C	largh.	prof.	h	in I	LARGH.	PROF.	Н	in kW²	elettrico*	in kg	(HNO ₃)	(N ₂)
NRA 40/02 CDB	200	300	450	300	40	1400	1600	2400	2	trifase1	800	max. 70 ml/h	1000 l/h
NRA 150/02 CDB	200	450	700	450	150	1650	1960	2850	20	trifase1	1650	max. 180 ml/h	max. 4000 l/h

¹Riscaldamento solo tra due fasi

²Potenza allacciata, a seconda del modello del forno potrebbe essere superiore

³Le dimensioni esterne variano in caso di dotazione aggiuntiva. Dimensioni su richiesta


Forni a storte a pareti fredde fino a 2400 °C

I forni a storte compatti della serie VHT sono forni a camera riscaldamento elettrico e realizzati con camera di riscaldamento in grafite, molibdeno, tungsteno oppure MoSia. Grazie alle soluzioni variabili di riscaldamento e grazie all'ampia gamma di accessori, questi forni a storte offrono la possibilità di realizzare anche processi tecnicamente sofisticati del cliente.

La storta sottovuoto consente di svolgere processi di trattamento termico in atmosfere con gas inerte o di reazione oppure sottovuoto, in base al modello fino a 10⁻⁵ mbar. Il forno base è indicato per il funzionamento con gas inerti o di reazione non infiammabili o sottovuoto. La versione H_a permette l'utilizzo con idrogeno o altri gas combustibili. Fulcro di questa versione è un sistema di sicurezza certificato, che rende possibile un funzionamento sicuro in qualsiasi momento e che attiva, in caso di guasto, un apposito programma di emergenza.

Riscaldatore in disiliciuro di molibdeno e isolamento in fibra

Camera di riscaldamento in molibdeno o in tungs-

Inserto in grafite

Specifiche di riscaldamento alternative

Generalmente le seguenti varianti sono disponibili nel rispetto delle esigenze di processo:

VHT ../..-GR con isolamento e riscaldamento in grafite

- Utilizzabile per processi sotto gas inerte e gas di reazione oppure sottovuoto
- Tmax 1800 °C, 2200 °C o 2400 °C (VHT 40/.. VHT 100/..)
- Vuoto massimo in base al tipo di pompa utilizzato fino a 10-4 mbar
- Isolamento in feltro di grafite

VHT ../..-MO oppure VHT ../..-W con riscaldamento al molibdeno o al tungsteno

- Impiegabile per processi sotto gas inerti e di reazione puri oppure sotto vuoto spinto
- Tmax 1200 °C, 1600 °C o 1800 °C (cfr. tabella)
- Vuoto massimo in base al tipo di pompa utilizzato fino a 10⁻⁵ mbar
- Isolamento in pannelli riscaldanti di molibdeno risp tungsteno

VHT ../..-KE con isolamento in fibra e riscaldamento tramite elementi in disiliciuro di molibdeno

- Utilizzabile per processi sotto gas inerte e gas di reazione oppure in aria o sottovuoto
- Tmax 1800 °C
- Vuoto massimo in base al tipo di pompa utilizzato fino a 10-2 mbar (fino a 1300 °C)
- Isolamento in fibra ad ossidi di alluminio ad elevata purezza
- Esclusivo uso di materiali isolanti senza categorizzazione in conformità al Regolamento CE n. 1272/2008 (CLP). Questo significa esplicitamente che non viene utilizzata lana di silicato di alluminio, conosciuta anche come "fibra ceramica refrattaria" (RCF) classificata come possibile cancerogeno.

	VHT/GR	VHT/MO	VHT/18-W	VHT/18-KE
Tmax	1800 °C, 2200 °C oppure 2400 °C	1200 °C oppure 1600 °C	1800 °C	1800 °C
Gas inerte	✓	✓	✓	✓
Aria/Ossigeno	-	-	-	✓
Idrogeno	√ 3,4	√3	✓3	√ 1,3
Vuoto grossolano, fine (>10 ⁻³ mbar)	✓	✓	✓	✓2
Vuoto spinto (<10 ⁻³ mbar)	✓4	✓	✓	✓2
Materiale di riscaldatore	Grafite	Molibdeno	Tungsteno	MoSi ₂
Materiale di isolamento	Feltro di grafite	Molibdeno	Tungsteno/Molibdeno	Fibra ceramica

¹Tmax si riduce a 1400 °C

²A seconda della temperatura

Rappresentazione schematica forno a storte a pareti fredde con dotazione aggiuntiva

- 1 Storta
- 2 Riscaldamento
- 3 Isolamento
- 4 Sistema di gestione del gas
- 5 Pompa per vuoto
- 6 Distribuzione acqua di raffreddamento
- 7 Controller
- 8 Impianto di distribuzione integrato
- 9 Trasformatore riscaldamento
- 10 Telaio di caricamento nella camera di processo

Forno a storta VHT 100/16-MO con pacchetto automatico

Versione base

- Dimensioni standard 8 500 litri di vano forno
- Storta in acciaio inossidabile raffreddata ad acqua da tutti i lati
- Telaio in profilati d'acciaio stabili, di facile manutenzione grazie ai pannelli di acciaio inox facilmente rimovibili
- Corpo del modello VHT 8 su ruote per uno spostamento agevole del forno
- Distributore dell'acqua di raffreddamento con rubinetto manuali di intercettazione, monitoraggio automatico della portata e sistema aperto di raffreddamento ad acqua
- Circuiti di raffreddamento regolabili con flussimetro e indicatore di temperatura e sovratemperatura
- Impianto di distribuzione e controller integrati nel corpo
- Controllo dei processi con controller P570
- Selettore-limitatore della temperatura con temperatura di spegnimento regolabile per proteggere il forno e i prodotti da temperature eccessive
- Comando manuale delle funzioni del gas di processo e del vuoto
- Immissione manuale del gas per un gas di processo (N₂, Ar o formiergas non infiammabile) con portata regolabile
- Bypass con valvola manuale per il riempimento rapido del vano forno
- Scarico gas manuale con valvola di troppopieno (20 mbar relativi)
- Pompa rotativa monostadio con valvola a sfera per la pre-evacuazione e per trattamenti termici a basso vuoto fino a 5 mbar
- Manometro per il monitoraggio visivo della pressione
- Applicazione definita entro i limiti delle istruzioni per l'uso

Forno a storta VHT 8/16-MO con pacchetto automatico

Trattamento termico di barrette di rame con idrogeno in forno a storta VHT 8/16-MO

Termocoppia di tipo S con dispositivo di estrazione automatica per ottimi risultati di regolazione nel campo di temperatura inferiore

Pompa turbomolecolare

Sistema supplementare di gestione del gas

- Immissione del gas manuale per un secondo gas di processo (N₂, Ar o formiergas non infiammabile) con portata regolabile e bypass
- Regolatore di portata per portate in volume variabili e per la generazione di miscele di gas con un secondo gas di processo (solo con il sistema automatico)
- Cassetta di processo in molibdeno, tungsteno, grafite o CFC, particolarmente consigliata per i processi di deceraggio. La cassetta con entrata e uscita diretta del gas viene installata nella camera del forno e serve a migliorare l'uniformità della temperatura. I gas di scarico generati saranno direttamente convogliati fuori alla camera interna di processo durante il debinding. Il cambio di circuito del gas in entrata dopo il debinding avrà come risultato un'atmosfera pulita nella camera di processo.

Dotazione aggiuntiva per vuoto

- Pompa rotativa a due stadi con valvola a sfera per la pre-evacuazione e per trattamenti termici in vuoto fine fino a 10⁻² mbar inclusoi trasduttore di pressione elettronico
- Pompa turbomolecolare con valvola di scorrimento per la pre-evacuazione e per trattamenti termici in alto vuoto fino a 10⁻⁵ mbar inclusi trasduttore di pressione elettronico e pompa di prevuoto
- Altre pompe per vuoto a richiesta
- Servizio a pressione parziale: alimentazione di gas con sottopressione regolata (solo con il sistema automatico)

Dotazione aggiuntiva raffreddamento

- Scambiatore di calore con sistema di raffreddamento a circuito chiuso
- Raffreddamento diretto vedi pagina 29

Dotazione aggiuntiva per controllo e documentazione

- Termocoppia per la carica con indicatore
- Misurazione di temperatura nei modelli per 2200 °C mediante pirometro nel campo di temperatura superiore e termocoppia di tipo C con dispositivo automatico di estrazione per ottimi risultati di regolazione nel campo di temperatura inferiore (a partire da VHT 40/..-GR)
- Pacchetto automatico con controllo dei processi H3700
 - Touch panel grafico 12"
 - Inserimento di tutti i dati di processo come temperature, tassi di riscaldamento, gasaggio e vuoto tramite il touch panel
 - Visualizzazione di tutti i dati di processo rilevanti su una schermata di processo
 - Sistema di gasaggio automatico per un gas di processo (N₂, Ar o formiergas non infiammabile) con portata regolabile
 - Bypass per il riempimento rapido del serbatoio con gas di processo, comandato tramite il programma
 - Programma iniziale e finale automatico incluso test di rilevazione fughe per un funzionamento sicuro del forno
 - Scarico automatico del gas con valvola a soffietto e valvola di troppopieno (20 mbar relativi)
 - Trasduttore di pressione per pressione assoluta e relativa
- Controllo dei processi e documentazione mediante pacchetto software VCD o Nabertherm Control-Center NCC per il monitoraggio, la documentazione e la gestione vedi pagina 76

Camera di processo interno in grafite con portacarica

Camera di processo interno in molibdeno con sei supporti di carica

Cassetta di processo per deceraggio residuo con gas inerte

Determinati processi richiedono il deceraggio della carica con gas inerti o di reazione non infiammabili. Per questi processi sono particolarmente adatti i forni a storte a pareti calde (vedi modelli N .. oppure SR ..). Con questi forni a storte viene garantito che la formazione di depositi di condensa è ridotta alla minima misura possibile.

Qualora non fosse possibile evitare la fuoriuscita di piccole quantità di legante residuo durante il processo nel forno a storte VHT, è opportuno optare per un'esecuzione specifica del forno.

La camera del forno viene corredata di una cassetta di processo aggiuntiva, con scarico diretto nel bruciatore a torcia, dal quale è possibile dissipare direttamente il gas di scarico. Con questo sistema viene garantito che i gas di scarico del deceraggio non inquinino il vano forno.

In base alla composizione dei gas di scarico, la linea del gas di scarico può essere realizzata con diverse opzioni:

- Bruciatore a torcia per la combustione dei gas di scarico
- Trappola di condensa per la separazione del legante
- Trattamento successivo dei gas di scarico, a seconda del processo, tramite dispositivo di lavaggio
- Scarico gas riscaldato per impedire il deposito di condensa nella linea dei gas di scarico

Modello	Dimensioni ir	iterne della cassetta di pr	ocesso in mm	Volume
	largh.	prof.	h	in I
VHT 8/	120	210	150	3,5
VHT 25/	200	350	200	14,0
VHT 40/	250	430	250	25,0
VHT 70/	325	475	325	50,0
VHT 100/	425	500	425	90,0
VHT 250/	575	700	575	230,0
VHT 500/	725	850	725	445,0

Modello	Dimen	sioni interne	in mm	Volume	Max peso per	Dimension	i esterne ⁶ i	rne ⁶ in mm Potenza termica in kW ⁴				
	largh.	prof.	h	in I	la carica/kg	LARGH.	PROF.	Н	Grafite	Molibdeno	Tungsteno	Fibra ceramica
VHT 8/	170	240	200	8	5	1250 (800)1	1100	2700⁵	27/27/-2	19/34 ³	50	12
VHT 25/	250	400	250	25	20	1500	2500	2200	70/90/-2	45/65 ³	85	25
VHT 40/	300	450	300	40	30	1600	2600 ⁵	2300	83/103/1252	54/90 ³	110	30
VHT 70/	375	500	375	70	50	1800⁵	33005	2400	105/125/150 ²	70/110 ³	130	55
VHT 100/	450	550	450	100	75	1900	3500 ⁵	2500	131/155/175 ²	90/140 ³	su richiesta	85
VHT 250/	600	750	600	250	175	3000¹	4300	3100	180/210/-2	su richiesta	su richiesta	su richiesta
VHT 500/	750	900	750	500	350	3200¹	4500	3300	220/260/-2	su richiesta	su richiesta	su richiesta

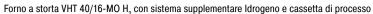
¹Unità di commutazione di sistema separata

²1800 °C/2200 °C

31200 °C/1600 °C

⁴Potenza allacciata, a seconda del modello del forno potrebbe essere superiore ⁵Le dimensioni possono essere più piccole in base al tipo di riscaldamento ⁶Le dimensioni esterne variano in caso di dotazione aggiuntiva. Dimensioni su richiesta.

Pompa rotativa monostadio per trattamenti termici sottovuoto grossolano fino a 5 mbar



Pompa rotativa a due stadi per trattamenti termici sottovuoto fino a 10-2 mbar

Pompa turbomolecolare con pompa di prevuoto per trattamenti termici sottovuoto fino a 10⁻⁵ mbar

Versione H₂ per il funzionamento con idrogeno o altri gas combustibili

Nella versione H₂ i forni a storte possono essere fatti funzionare con idrogeno o altri gas combustibili. Per queste applicazioni, questi impianti sono equipaggiati con la necessaria tecnica di sicurezza. Come sensori rilevanti per la sicurezza sono utilizzati esclusivamente componenti di provata efficacia dotati della corrispondente certificazione. I forni a storte sono comandati tramite un controllore PLC fail-safe (S7-300F/controllo di sicurezza).

Forno a storta VHT 100/15-KE $\rm H_2$ con isolamento in fibra con pacchetto di ampliamento per il funzionamento con idrogeno, 1400 °C

Versione base

- Sistema di sicurezza certificato
- Sistema automatico (dotazione aggiuntiva vedi pagina 26)
- Valvole di ingresso gas ridondanti per l'idrogeno
- Pressioni all'ingresso monitorate per tutti i gas di processo
- Bypass per il lavaggio sicuro del vano forno con gas inerte
- Serbatoio di immissione d'emergenza a pressione monitorata con elettrovalvole ad apertura automatica
- Bruciatore a torcia (riscaldato elettricamente o a gas) per la post-combustione dell'H,
- Funzionamento in atmosfera: Lavaggio con H₂ della storta a sovrapressione regolata (50 mbar relativi) a
 partire da temperatura ambiente


Sistema di gestione del gas

Dotazione aggiuntiva

- Servizio a pressione parziale: Flussaggio di H₂ a sottopressione regolata (pressione parziale) nella storta a partire da una temperatura di 750 °C nel vano forno
- Cappa di processo interna alla storta per il deceraggio con idrogeno
- Controllo dei processi e documentazione tramite Nabertherm Control-Center NCC per il monitoraggio, la documentazione e il controllo vedi pagina 76

Sistemi di raffreddamento forni a storte

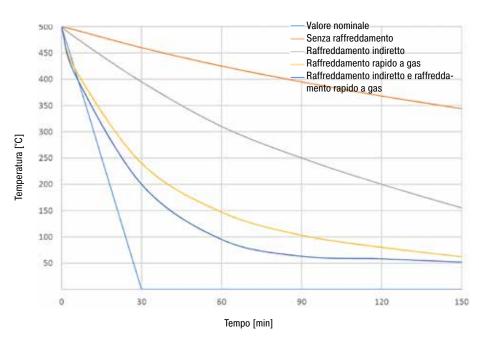
Rappresentazione schematica del raffreddamento rapido a gas

- 1 Scambiatore di calore a gas
- 2 Ventilatore radiale
- 3 Rubinetti di intercettazione

Raffreddamento a ventola forno a storte a pareti calde NRA 400/03

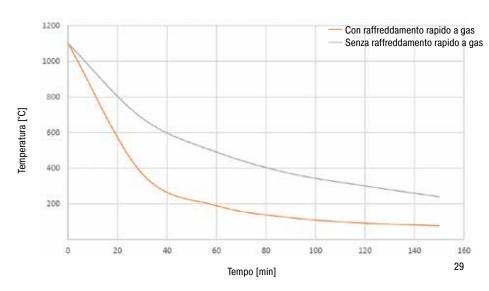
Raffreddamento rapido a gas forno a storte a pareti fredde VHT 8/16-MO

Raffreddamento indiretto (forni a storte a pareti calde)


- Per raffreddare la storta, viene soffiata aria ambiente dall'esterno sulla storta. Il calore di scarico viene rimosso attraverso l'uscita per l'aria viziata.
- Il raffreddamento della carica è indiretto, ossia non modifica l'atmosfera presente nella storta
- Con il sistema di raffreddamento non è possibile raffreddare la carica

Raffreddamento diretto (forni a storte a pareti calde e a pareti fredde)

- Raffreddamento rapido a gas nella storta. A tal fine l'atmosfera del forno viene condotta in circolazione tramite uno scambiatore di calore.
- La pressione del sistema non aumenta durante il raffreddamento, vale a dire nessun raffreddamento a gas in sovrappressione
- Non per processi con atmosfere del forno infiammabili


Raffreddamento forno a storte a pareti calde con carica

(Esempio: NRA 50/09 con carico di 40 kg)

Raffreddamento forno a storte a pareti fredde con carica

(Esempio: VHT 8/16-MO con carico di 10 kg)

Forni a camera a convezione fino a 675 litri riscaldamento elettrico

L'ottima uniformità di temperatura di questi forni a camera a circolazione d'aria fornisce condizioni di processo ideali per ricottura, polimerizzazione, solubilizzazione, invecchiamento artificiale, sinterizzazione di PTFE, preriscaldo o ricottura dolce e brasatura. I forni a camera a convezione forzata sono dotati di un'apposita cassetta di ricottura per la ricottura dolce del rame o la tempra del titanio, nonché per la ricottura dell'acciaio sotto gas protettivi o di reazione non infiammabili. Il design modulare del forno a camera a convezione forzata consente l'adattamento a requisiti di processo specifici con accessori appropriati.

Forno a camera a convezione NA 500/65

Forno a camera a convezione NA 250/85

Versione standard

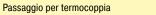
- Tmax 450 °C, 650 °C o 850 °C
- Circolazione orizzontale dell'aria con ottima ripartizione grazie ai deflettori dell'aria in acciaio inossidabile
- Porta orientabile con battuta a destra
- Basamento compreso nella fornitura
- Uniformità della temperatura secondo DIN 17052-1 fino a +/- 4 °C vedi pagina 72
- Distribuzione ottimale dell'aria grazie ad elevate velocità di corrente
- Un ripiano base e listelli per altri due ripiani di caricamento compresi nella fornitura
- Controller B500 con operatività touch (5 programmi da 4 segmenti ciascuno), per la descrizione della regolazione vedi pagina 76

Dotazione aggiuntiva per modelli fino a 450 °C

- Flap di presa e scarico aria in caso di utilizzo per essiccazione
- Raffreddamento controllato tramite flap e ventola
- Ripiani di caricamento aggiuntivi
- Cassette di gasaggio per diversi metodi di caricamento
- Raccordi di alimentazione del gas
- Regolazione carica con documentazione termocoppia carica
- Torre di segnalazione
- Sistemi di caricamento

Ulteriori dotazione aggiuntive per modelli fino a 850°C

- Ottimizzazione d'uniformità della temperatura secondo DIN 17052-1 fino a +/- 3 °C vedi pagina 72
- Supporti di misurazione e termocoppie per misurazioni TUS o per misurazioni comparative
- Versione secondo AMS2750F o CQI-9
- Porta ad apertura parallela manuale (fino al modello NA 120/..)
- Porta ad apertura parallela pneumatica
- Rulliera manuale nella camera del forno per carichi elevati



 $For no\ a\ camera\ a\ convezione\ NA\ 120/45\ con\ sistema\ di\ raffred damento\ come\ accessorio\ opzionale$

Modello	Tmax	Dimensi	oni intern	e in mm	Volume	Dimensioni esterne¹ in mm		Potenza termica	Allac- cia-mento elettrico*	Peso	Tempo di riscaldamento ³ fino a Tmax	•	di raffreddamento³ da Tmax a 150 °C in min	
	°C	largh.	prof.	h	in I	LARGH.	PROF.	Н	in kW ²		in kg	in min	Flap⁴	Ventola di raffreddamento ⁴
NA 120/45	450	450	600	450	120	1250	1550	1550	9,0	trifase	460	60	240	30
NA 250/45	450	600	750	600	250	1350	1650	1725	12,0	trifase	590	60	120	30
NA 500/45	450	750	1000	750	500	1550	1900	1820	18,0	trifase	750	60	240	30
NA 60/65	650	350	500	350	60	910	1390	1475	9,0	trifase	350	120	270	60
NA 120/65	650	450	600	450	120	990	1470	1550	12,0	trifase	460	60	300	60
NA 250/65	650	600	750	600	250	1170	1650	1680	20,0	trifase	590	90	270	60
NA 500/65	650	750	1000	750	500	1290	1890	1825	27,0	trifase	750	60	240	60
NA 60/85	850	350	500	350	60	790	1330	1440	9,0	trifase	315	150	900	120
NA 120/85	850	450	600	450	120	890	1420	1540	12,0	trifase	390	150	900	120
NA 250/85	850	600	750	600	250	1120	1690	1810	20,0	trifase	840	180	900	180
NA 500/85	850	750	1000	750	500	1270	1940	1960	30,0	trifase	1150	180	900	210
NA 675/85	850	750	1200	750	675	1270	2190	1960	30,0	trifase	1350	210	900	210

¹Le dimensioni esterne variano in caso di dotazione aggiuntiva. Dimensioni su richiesta. ²Potenza allacciata, a seconda del modello del forno potrebbe essere superiore ³Informazioni approssimative a forno vuoto ⁴Dotazione aggiuntiva

Ripiano di caricamento

*Per le indicazioni sulla tensione di alimentazione vedi pagina 80

Trasportatore a rulli nel vano forno

Cassette di gasaggio per modelli NA 120/45 - NA 675/85

Per il trattamento termico i pezzi da trattare sono messi nella cassetta, il coperchio viene chiuso a chiavistello ed avviene il lavaggio con gas inerte per un certo tempo al di fuori del forno. Dopodiché la cassetta è inserita nel forno. A seconda del peso è consigliabile utilizzare un carrello di caricamento per caricare il forno.

Forno a camera a convezione NA 250/85 con cassetta di gasaggio

Dotazione standaro

- Per gas inerti e di reazione incombustibili come argon, azoto e miscela azotidrica (rispettare le norme nazionali)
- Cassetta di gasaggio con guarnizione in fibra e coperchio con blocchetto di chiusura, alimentazione di gas inerte attraverso un tubo nel fondo della cassetta
- Allacciamento per gas inerte mediante giunto rapido con attacco tubo (diametro interno 9 mm)
- Tubi per entrata e uscita gas inerte attraverso il collare del forno
- I modelli NA 250/.. e NA 500/.. saranno forniti senza la piastra di caricamento di base
- Lega resistente al calore: 309 (AISI) (materiale n. 1.4828 secondo DIN)
- Termocoppia carica tipo K per indicazione della temperatura o regolazione della carica

Dotazione aggiuntiva

- Sistemi di gasaggio vedi pagina 60
- Prolunga tubi gas per l'utilizzo di cassette più piccole in modelli di forni grandi
- Asta con gancio
- Carrello di caricamento vedi pagina 62

Codice articolo		Forno	Dimer	Dimensioni interne in mm			sioni esterne	Sistema di caricamento	
(Forno con porta	(Forno con porta ad								della cassetta
orientabile)	apertura parallela)		largh.	prof.	h	Largh.	Prof.	Н	
631000411	631000764	NA 60/	270	420	260	336	460	340	asta con gancio
631000412	631000765	NA 120/	350	520	340	436	560	430	asta con gancio
631000413	631000766	NA 250/	480	630	460	546	680	600	elevatore di caricamento
631000414	631000767	NA 500/	630	780	610	696	836	760	elevatore di caricamento

Codice articolo 601655055, 1 lotto di cordone di tenuta a fibra, composto di 5 strisce di 610 mm caduna

Spazio utile = dimensioni interne della cassetta - 30 mm su tutti i lati

Cassette più grandi e di dimensioni speciali su richiesta

Cassetta di gasaggio da lasciare nel forno

1 Senza tubi

Cassetta di gasaggio con tubo gas allungato per l'utilizzo in un modello di forno più grande

Sistema di flussaggio automatico del gas

Cassette di gasaggio con coperchio di evacuazione per modelli NA 120/45 - NA 675/85

Design come le cassette descritte precedentemente, ma con coperchio per evacuazione addizionale e connessione. Nella cassetta, a freddo, prima dell'inserimento nel forno saranno effettuate alternativamente evacuazioni e atmosfere di gas inerte per abbattere l'ossigeno ed ottenere un'atmosfera pura.

Cassetta di gasaggio con coperchio di evacuazione

- Cassetta di gasaggio con guarnizione in fibra e coperchio con blocchetto di chiusura, incavo per coperchio per evacuazione, alimentazione di gas inerte attraverso un tubo nel fondo della cassetta
- Coperchio per evacuazione con guarnizione in gomma (elastomero) e manometro
- Allacciamento per gas inerte tramite valvola a sfera a tre vie e giunto rapido con attacco tubo (diametro interno 9 mm)
- Tubi per entrata e uscita gas inerte attraverso il collare del forno

Dotazione aggiuntiva

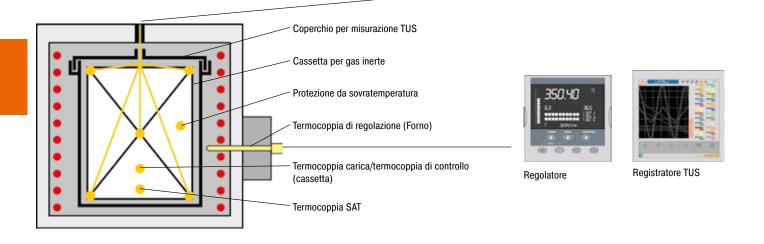
- Pompa per vuoto vedi pagina 61
- Sistemi di gasaggio vedi pagina 60
- Prolunga tubi gas per l'utilizzo di cassette più piccole in modelli di forni grandi
- Asta con gancio
- Carrello di caricamento vedi pagina 62

Codice articolo		Forno	Dimensioni interne in mm			Dimen	sioni esterne	Sistema di caricamento	
(Forno con porta	(Forno con porta ad								della cassetta
orientabile)	apertura parallela)		largh.	prof.	h	Largh.	Prof.	Н	
631000560	631000807	NA 60/	230	380	220	318	468	297	asta con gancio
631000561	631000808	NA 120/	330	480	320	418	568	412	asta con gancio
631000562	631000809	NA 250/	430	580	370	518	668	532	elevatore di caricamento
631000563	631000810	NA 500/	560	810	530	648	898	692	elevatore di caricamento

Codice articolo 601655055, 1 lotto di cordone di tenuta a fibra, composto di 5 strisce di 610 mm caduna

Spazio utile = dimensioni interne della cassetta - 30 mm su tutti i lati

Cassette più grandi e di dimensioni speciali su richiesta


Cassette di gasaggio per normative del settore automobilistico (CQI-9) e aeronautico (AMS/NADCAP)

Cassette di gasaggio conformi alla normativa AMS2750F, strumentazione tipo D per forni a convezione

Queste cassette si basano sulle cassette di ricottura standard per forni con porta orientabile. Per soddisfare i requisiti previsti dalla normativa AMS2750F, strumentazione tipo D, le cassette sono equipaggiate con le aperture per le necessarie misurazioni.

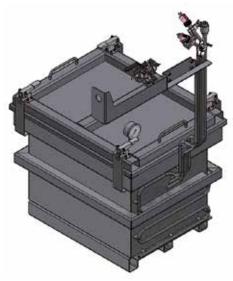
Dotazione standard

- Uniformità della temperatura classe 2: +/- 5 °C nello spazio utile
- Apertura supplementare per la termocoppia SAT flessibile del cliente, diametro max. 1,5 mm
- Termocoppia, protezione da sovratemperatura, termocoppia tipo N rivestita in metallo con connettore

Supporto di misurazione TUS per cassetta di gasaggio

Per misurare l'uniformità della temperatura, la cassetta di gasaggio sarà equipaggiata con un secondo coperchio. Il telaio per la misurazione TUS è fissato al coperchio e questo è provvisto di un'apertura per le termocoppie.

Dotazione standard


- Tmax 1100 °C
- Utilizzabile per tutte le normative di pertinenza TUS
- A condizione che il forno sia equipaggiato di un'apertura per termocoppia
- Lega resistente al calore 314 (AISI) (materiale n. 1.4828 secondo DIN)
- Termocoppie non comprese

Codice articolo		Forno	Dim	ensioni interne ir	n mm	Dimensioni esterne in mm ¹			
(Forno con porta orientabile)	(Forno con porta ad apertura parallela)		largh.	prof.	h	Largh.	Prof.	Н	
631001021	631001026	NA 60/	270	420	260	336	460	340	
631001022	631001027	NA 120/	350	520	340	436	560	430	
631001023	631001028	NA 250/	480	630	460	546	680	600	
631001024	631001029	NA 500/	630	780	610	696	836	760	

Codice articolo 601655055, 1 lotto di cordone di tenuta a fibra, composto di 5 strisce di 610 mm caduna

Spazio utile = dimensioni interne della cassetta - 30 mm su tutti i lati

Cassette più grandi e di dimensioni speciali su richiesta

Cassette di gasaggio con coperchio di evacuazione conformi alla normativa AMS2750F

Cassette di gasaggio con coperchio di evacuazione conformi alla normativa AMS2750F, strumentazione tipo D

Queste cassette si basano sulle cassette di gasaggio con coperchio per evacuazione per forni con porta orientabile. Nella cassetta, a freddo, prima dell'inserimento nel forno saranno effettuate alternativamente evacuazioni e atmosfere di gas inerte per abbattere l'ossigeno ed ottenere un'atmosfera pura.

Dotazione standard

- Uniformità della temperatura classe 2: +/- 5 °C nello spazio utile
- Apertura supplementare per la termocoppia SAT flessibile del cliente, diametro max. 1,5 mm
- Termocoppia, protezione da sovratemperatura, termocoppia tipo N rivestita in metallo con connettore

Codice articolo		Forno	Dime	ensioni interne in	mm	Dime	nsioni esterne ii	n mm¹
(Forno con porta orien-	(Forno con porta ad aper-							
tabile)	tura parallela)		largh.	prof.	h	Largh.	Prof.	Н
631001053	631001058	NA 60/	230	380	220	318	468	297
631001052	631001057	NA 120/	330	480	320	418	568	412
631001051	631001056	NA 250/	430	580	370	518	668	532
631001050	631001055	NA 500/	560	810	530	648	898	692

Codice articolo 601655055, 1 lotto di cordone di tenuta a fibra, composto di 5 strisce di 610 mm caduna

Spazio utile = dimensioni interne della cassetta - 30 mm su tutti i lati Cassette più grandi e di dimensioni speciali su richiesta

Forni a camera a convezione – design da tavolo riscaldamento elettrico

Questi forni a camera a convezione sono caratterizzati dalla loro uniformità di temperatura estremamente elevata. Grazie al design compatto da tavolo, questa serie è particolarmente idonea per l'installazione in laboratori o stanze con spazio limitato.

Le applicazioni includono il preriscaldo dei componenti per i processi di calettatura, il trattamento termico dei metalli in aria come l'invecchiamento, la distensione, la ricottura o la tempra e il trattamento termico del vetro.

Forno a camera a convezione NAT 15/85 con telaio di base come equipaggiamento addizionale

Versione standard

- Tmax 650 °C o 850 °C
- Circolazione orizzontale dell'aria con ottima ripartizione grazie ai deflettori dell'aria in acciaio inossidabile
- Corpo a pareti doppie in lamiere strutturate in acciaio con ventola di raffreddamento addizionale per mantenere basse le temperature esterne
- Unità di controllo integrata
- Porta orientabile con battuta a destra, temperature di apertura della porta fino a 400 °C.
- Uniformità della temperatura secondo DIN 17052-1 fino a +/- 6 °C (modello NAT 15/65 fino a +/- 5 °C) vedi pagina 72
- Distribuzione ottimale dell'aria grazie ad elevate velocità di corrente
- Ingresso aria nella parete posteriore del forno
- Attacco di scarico regolabile nel cielo del forno (non per modello NAT 15/65)
- Accesso da 15 mm nel cielo del forno (non per modello NAT 15/65)
- Controller B500/B510 con operatività touch (5 programmi da 4 segmenti ciascuno), per la descrizione della regolazione vedi pagina 76

Forno a camera a convezione NAT 30/65

Dotazione aggiuntiva (non per NAT 15/65)

- Telaio di base
- Rastrelliere per il caricamento su più livelliRaffreddamento controllato con ventilazione assistita
- Pacchetto di apparecchiature con controllo batch e controllo di processo e documentazione tramite pacchetto software VCD

Forno a camera a convezione NAT 50/85

Modello	Tmax	Dimens	sioni interne	in mm	Volume	Dimens	ioni esterne	¹ in mm	Potenza termica	Allac- cia-mento elettrico*	Peso	Tempo di riscal- damento ³ fino a Tmax
	°C	largh.	prof.	h	in I	LARGH.	PROF.	Н	in kW ²		in kg	in min
NAT 15/65	650	295	340	170	15	470	790	460	2,8	monofase	60	40
NAT 30/65	650	320	320	300	30	810	620	620	3,0	monofase	90	80
NAT 60/65	650	400	400	400	60	890	700	720	3,0	monofase	110	100
NAT 15/85	850	320	320	150	15	690	880	570	3,0	monofase	85	190
NAT 30/85	850	320	320	300	30	690	880	720	3,0	monofase	100	230
NAT 50/85	850	400	320	400	50	770	880	820	4,5	trifase	130	230

^{&#}x27;Le dimensioni esterne variano in caso di dotazione aggiuntiva. Dimensioni su richiesta. ²Potenza allacciata, a seconda del modello del forno potrebbe essere superiore

*Per le indicazioni sulla tensione di alimentazione vedi pagina 80

Attacco di scarico regolabile nel cielo del forno

Forno a camera a convezione NAT 30/85 come modello da tavolo

Interno in lamiera di acciaio inox 1.4828

³Informazioni approssimative a forno vuoto

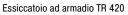
Essiccatori ad armadio riscaldamento elettrico

Con una temperatura d'esercizio massima di 300 °C e la circolazione dell'aria forzata, gli essiccatoi ad armadio raggiungono un'ottimale uniformità della temperatura. Si prestano a molteplici applicazioni, come ad esempio l'essiccazione, la sterilizzazione o l'invecchiamento artificiale. Per i modelli standard sono garantiti tempi di consegna rapidi da magazzino.

Essiccatoio ad armadio TR 240

Essiccatoio ad armadio TR 450

Versione standard


- Tmax 300 °C
- Intervallo di temperatura di lavoro: da + 20 °C rispetto a temperatura ambiente fino a 300 °C
- Essiccatori ad armadio TR 30 TR 420 come modelli da tavolo
- Essiccatori ad armadio TR 450 TR 1050 come modelli fissi
- Grazie alla circolazione orizzontale ad aria forzata l'uniformità di temperatura secondo DIN 17052-1 risulta essere migliore di +/- 5 °C nella nello spazio utile vuoto (con bocchetta dell'aria di scarico chiusa) vedi pagina 72
- Scocca in acciaio inossidabile, materiale 1.4016 (DIN)
- Camera in acciaio, lega 304 (AISI) (materiale n. 1.4301 secondo DIN), inossidabile e di facile pulizia
- Possibilità di caricamento su vari livelli mediante griglie (per il numero delle griglie vedi tabella a destra)
- Grande porta ad ampia apertura, con battuta a destra e chiusura rapida per i modelli TR 30 - TR 240 e TR 450
- Porta orientabile a due imposte con chiusure rapide per modelli TR 420, TR 800 e TR 1050
- = Essiccatori ad armadio TR 800 e TR 1050 con rotelle di trasporto
- Scarico dell'aria sulla parete posteriore regolabile a variazione continua da davanti
- Regolazione a microprocessore PID con sistema di autodiagnosi
- Controller R7, regolatori alternativi programmabili vedi pagina 80
- Riscaldamento silenzioso con relè a semiconduttore

Dotazione aggiuntiva

- Limitatore di sovra temperatura con temperatura di spegnimento regolabile su una temperatura limite per proteggere il forno e la carica
- La velocità della ventola di circolazione aria può essere ridotta all'infinito
- Finestra per osservare la carica
- Griglie aggiuntive con barre a inserimento
- Apertura laterale
- Dispositivo di rotazione elettrico (il relativo prelievo di campioni viene modificato in modo specifico per il cliente)
- Condotto di scarico dell'aria DN 80
- Rotelle di trasporto per modelli TR 240 TR 450
- Possibilità di ampliamento per requisiti di qualità secondo AMS2750G oppure FDA
- Filtro aria fresca per la riduzione del carico di polvere nella camera del forno

Essiccatoio ad armadio TR 1050 con porta a due imposte

Modello	Tmax	Dime	nsioni in	terne	Volume	Dimension	oni estern	e¹ in mm	Potenza	Allacciamento	Peso	Minuti	Griglie	Griglie	Carico max
			in mm						allacciata			per			
	in °C	largh.	prof.	h	in I	LARGH.	PROF.	Н	in kW	elettrico*	in kg	Tmax ²	incl.	max	totale3
TR 30	300	360	300	300	30	610	570	670	2,1	monofase	45	25	1	4	80
TR 60	300	450	390	350	60	700	665	720	3,1	monofase	90	25	1	4	120
TR 120	300	650	390	500	120	900	665	870	3,1	monofase	120	45	2	7	150
TR 240	300	750	550	600	240	1000	840	970	3,1	monofase	165	60	2	8	150
TR 420	300	1300	550	600	420	1550	910	990	6,3	trifase	250	60	2	8	200
TR 450	300	750	550	1100	450	1000	840	1470	6,3	trifase	235	60	3	15	180
TR 800	300	1200	680	1000	800	1470	1170	1520	6,3	trifase	360	80	3	10	250
TR 1050	300	1200	680	1400	1050	1470	1170	1920	9,3	trifase	450	80	4	14	250

¹Le dimensioni esterne variano in caso di dotazione aggiuntiva. Dimensioni su richiesta ²Nel forno vuoto e chiuso e con allacciamento a 230 V 1/N/PE o 400 V 3/N/PE

*Per le indicazioni sulla tensione di alimentazione vedi pagina 80

Essiccatore ad armadio TR 30 con finestra per visibilità interna

Griglie estraibili per il caricamento dell'essiccatoio ad armadio a vari livelli

Dispositivo di rotazione elettrico (qui con piattaforma personalizzata per contenitori PARR)

³Carico max. per piano 30 kg

Essiccatori a camera riscaldamento elettrico

Gli essiccatori a camera della serie KTR possono essere impiegati per vari processi di essiccamento e per trattamenti termici di cariche fino ad una temperatura di utilizzo di 260 °C. La potente circolazione d'aria, consente un'ottimale uniformità della temperatura nello spazio utile. Grazie ad un' ampia gamma di accessori, gli essiccatori a camera possono essere adattati a esigenze di processo individuali.

Riscaldamento diretto a gas in un essiccatore a camera

KTR 4500 con carrello a pianale, illuminazione interna e finestre di osservazione

Versione standard

- Tmax 260 °C
- Con riscaldamento elettrico (mediante registro termico con radiatori integrati in acciaio al cromo)
- Ottimale uniformità della temperatura secondo DIN 17052-1 fino a +/- 3 °C (versione senza corsie d'accesso) vedi pagina 72
- Isolamento in lana minerale di alta qualità che consente temperature delle pareti esterne < 25 °C rispetto alla temperatura ambiente
- Incl. isolamento del fondo
- Elevato ricambio dell'aria per rapidi processi di essiccamento
- Porta a due ante a partire da KTR 2300
- Limitatore di sovra temperatura con temperatura di spegnimento regolabile su una temperatura limite per proteggere il forno e la carica
- Controller B500 con operatività touch (5 programmi da 4 segmenti ciascuno), per la descrizione della regolazione vedi pagina 76

Dotazione aggiuntiva

- Riscaldamento a gas diretto o indiretto
- Basamento per il caricamento dell'essiccatore a mezzo di carrello elevatore
- Porta supplementare nella parete posteriore per il caricamento da entrambi i lati o per l'utilizzo come chiusa tra due camere
- Sistemi di ventilazione per il raffreddamento rapido con regolazione manuale o automatica delle valvole di scarico aria
- Apertura e chiusura della valvola di scarico aria gestita mediante il programma
- Circolazione aria con controllo di velocità, utile nei processi con carica leggera o sensibile
- Oblò ed illuminazione del vano forno
- Versione per processi di trattamento termico in camera bianca
- Sistemi rotanti per processi di tempra
- Tutti i modelli KTR sono disponibili anche con Tmax 300 °C

Accessori

- Gelosie in lamiera regolabili per regolare la conduzione dell'aria in base alla carica e migliorare l'uniformità della temperatura
- Barre e ripiani a inserimento
- Ripiani a inserimento con estrazione 2/3 in presenza di un carico uniformemente distribuito sull'intera superficie dal ripiano
- Carrello a pianale in abbinamento a binari d'accesso
- Carrello di caricamento con rastrelliera in abbinamento a binari d'accesso
- Tappi di isolamento per forni con binari d'accesso per migliorare l'uniformità della temperatura nello spazio utile

Telaio rotante a motore con cestelli integrati per la movimentazione della carica durante il trattamento termico

Modello	Tmax	Dimen	isioni interne i	n mm	Volume	Dimens	sioni esterne²	in mm	Potenza termica in kW1	Allacciamento
	°C	largh.	prof.	h	in I	LARGH.	PROF.	Н		elettrico*
KTR 1000	260	1000	1000	1000	1000	1820	1430	1890	18	trifase
KTR 1500	260	1000	1000	1500	1500	1820	1430	2390	18	trifase
KTR 2000	260	1100	1500	1200	2000	1920	1930	2090	18	trifase
KTR 2300	260	1250	1250	1500	2300	2120	1680	2460	27	trifase
KTR 3100	260	1250	1250	2000	3100	2120	1680	2960	27	trifase
KTR 3400	260	1500	1500	1500	3400	2370	1930	2460	45	trifase
KTR 4500	260	1500	1500	2000	4500	2370	1930	2960	45	trifase
KTR 4600	260	1750	1750	1500	4600	2620	2175	2480	45	trifase
KTR 6000	260	2000	2000	1500	6000	2870	2430	2460	54	trifase
KTR 6125	260	1750	1750	2000	6125	2620	2175	2980	45	trifase
KTR 6250	260	1250	2500	2000	6250	2120	3035	2960	54	trifase
KTR 8000	260	2000	2000	2000	8000	2870	2430	2960	54	trifase
KTR 9000	260	1500	3000	2000	9000	2490	3870	2920	72	trifase
KTR 12300	260	1750	3500	2000	12300	2620	4350	2980	90	trifase
KTR 13250	260	1250	5000	2000	13250	2120	6170	2960	108	trifase
KTR 16000	260	2000	4000	2000	16000	2870	4850	2960	108	trifase
KTR 21300	260	2650	3550	2300	21300	3600	4195	3380	108	trifase
KTR 22500	260	2000	4500	2500	22500	3140	5400	3500	108	trifase

¹Potenza allacciata, a seconda del modello del forno potrebbe essere superiore

 $^2\mbox{Le}$ dimensioni esterne variano in caso di dotazione aggiuntiva. Dimensioni su richiesta.

*Per le indicazioni sulla tensione di alimentazione vedi pagina 80

Gelosie regolabili per adattare l'afflusso di aria secondo la carica

Carrello di caricamento con lamiere estraibili

Basi di caricamento estraibili su rulli

MORE THAN HEAT 30-3000 °C **Gruppo di forni** LH 15/.. - LH 216/.. Forni a camera 46 Cassette di gasaggio e piastre di caricamento LH 15/.. - LH 216/.. 48 Forni a camera con estrazione a cassetto NW 150 - NW 1000 50 Cassette di gasaggio e campane di gasaggio per forni a NW 150 - NW 1000 51 camera N 7/H - N 641/13 52 Forni a camera Cassette di gasaggio e piastre di caricamento N 7/H - N 641/13 55 57 Forcelle di caricamento

Forni a camera con isolamento in pietra o isolamento in fibra

I forni a camera LH 15/12 - LF 120/14 danno da vari anni buoni risultati come forni a camera professionali da laboratorio. Questi forni sono disponibili sia con isolamento di mattoni refrattari leggeri (modelli LH) che con un isolamento combinato di mattoni refrattari leggeri agli angoli e materiale fibroso poco concentrato a raffreddamento veloce (modelli LF). Con i molteplici elementi aggiuntivi disponibili questi forni a camera possono essere adattati perfettamente al processo specifico.

Forno a camera LH 216/12 con ventola aria fredda per accelerarei tempi di raffreddamento

Versione standard

- Tmax 1200 °C, 1300 °C o 1400 °C
- Alloggiamento ventilato a doppio guscio realizzato con lamiere di acciaio inossidabile testurizzate per una bassa temperatura superficiale e un'elevata stabilità
- Vano forno alto con riscaldamento da 5 lati per un'ottima uniformità della temperatura
- Elementi riscaldanti in tubi di conduzione per una rapida diffusione del calore e una lunga durata
- Controller montato sulla porta del forno e removibile per una comoda operatività
- Protezione del fondo riscaldato del forno e del materiale accatastato mediante una lastra in SiC sul fondo
- Modelli LH: isolamento multistrato in mattoni refrattari leggeri e isolamento speciale del retro
- Modelli LF: isolamento in fibra di alta qualità con mattoni angolari per tempi di riscaldamento e raffreddamento più brevi
- Valvola di scarico dell'aria motorizzata
- Valvola a regolazione continua per la presa d'aria sulla superficie del forno
- Basamento compreso
- Controller P540 con operatività touch (10 programmi da 20 segmenti ciascuno), per controller alternativi vedi pagina 80

LH 60/13 DB50 per deceraggio in aria

Dotazione aggiuntiva

- Porta ad apertura parallela (protezione della porta dall'irradiazione del calore)
- Porta ad apertura parallela con attuatore lineare elettromeccanico per aprire il forno da caldo
- Sistema di raffreddamento per raffreddare il forno con un gradiente di temperatura definito o con un volume di aria fresca preimpostato. Entrambe le modalità operative possono essere attivate e disattivate per segmenti diversi mediante la funzione extra del controller.
- Allacciamento per gas inerte per il lavaggio del forno in gas inerti o di reazione non infiammabili
- Sistema di gasaggio manuale o automatico
- Cappa di scarico in acciaio inox come interfaccia per il sistema di scarico fumi presso il cliente

<u>Nabertherm</u>

Forno a camara LH 30/12 con porta ad apertura parallela manuale

Forno a camera LF 60/14

Modello	Tmax	Dimer	nsioni interne	in mm	Volume	Dimen	sioni esterne¹	in mm	Potenza	Allacciamento	Peso
	in °C	largh.	prof.	h	in I	LARGH.	PROF.	Н	allacciata in kW	elettrico*	in kg
LH 15/12	1200	250	250	250	15	680	860	1230	5	trifase2	170
LH 30/12	1200	320	320	320	30	710	930	1290	7	trifase2	200
LH 60/12	1200	400	400	400	60	790	1180	1370	8	trifase	300
LH 120/12	1200	500	500	500	120	890	1180	1470	12	trifase	410
LH 216/12	1200	600	600	600	216	990	1280	1590	20	trifase	470
LH 15/13	1300	250	250	250	15	680	860	1230	7	trifase ²	170
LH 30/13	1300	320	320	320	30	710	930	1290	8	trifase2	200
LH 60/13	1300	400	400	400	60	790	1180	1370	11	trifase	300
LH 120/13	1300	500	500	500	120	890	1180	1470	15	trifase	410
LH 216/13	1300	600	600	600	216	990	1280	1590	22	trifase	470
LH 15/14	1400	250	250	250	15	680	860	1230	8	trifase ²	170
LH 30/14	1400	320	320	320	30	710	930	1290	10	trifase ²	200
LH 60/14	1400	400	400	400	60	790	1180	1370	12	trifase	300
LH 120/14	1400	500	500	500	120	890	1180	1470	18	trifase	410
LH 216/14	1400	600	600	600	216	990	1280	1590	26	trifase	470
LF 15/13	1300	250	250	250	15	680	860	1230	7	trifase ²	150
LF 30/13	1300	320	320	320	30	710	930	1290	8	trifase2	180
LF 60/13	1300	400	400	400	60	790	1180	1370	11	trifase	270
LF 120/13	1300	500	500	500	120	890	1180	1470	15	trifase	370
_F 15/14	1400	250	250	250	15	680	860	1230	8	trifase ²	150
LF 30/14	1400	320	320	320	30	710	930	1290	10	trifase ²	180
LF 60/14	1400	400	400	400	60	790	1180	1370	12	trifase	270
LF 120/14	1400	500	500	500	120	890	1180	1470	18	trifase	370

¹Le dimensioni esterne variano in caso di dotazione aggiuntiva. Dimensioni su richiesta.

*Per le indicazioni sulla tensione di alimentazione vedi pagina 80

Porta ad apertura parallela per aprire il forno da caldo

Esecuzione con fondo murato

Il design del forno LF consente di ridurre i tempi di riscaldamento e raffreddamento

²Riscaldamento solo tra due fasi

Cassette di gasaggio per modelli LH 15/.. - LH 216/..

Il vano forno cubico dei forni a camera LH e le corrispondenti cassette di gasaggio rendono questi forni particolarmente indicati per cariche più alte. Le cassette di gasaggio per i modelli LH hanno normalmente una termocoppia carica che, ad esempio, può essere utilizzata per la regolazione della carica. L'adduzione e lo scarico del gas inerte avviene attraverso il collare del forno nei forni con porta orientabile e attraverso il collare inferiore nei forni con porta ad apertura parallela. Queste cassette dispongono di un coperchio per il caricamento dall'alto, entrata e uscita gas inerte.

Cassetta di gasaggio per forni con porta orientabile

Dotazione standard

- Tmax 1100 °C
- Per gas inerti e di reazione incombustibili come argon, azoto e miscela azotidrica (rispettare le norme nazionali)
- Cassetta di gasaggio con guarnizione in fibra e coperchio con blocchetto di chiusura, alimentazione di gas inerte attraverso un tubo nel fondo della cassetta
- Allacciamento per gas inerte mediante giunto rapido con attacco tubo (diametro interno 9 mm)
- Tubi per entrata e uscita gas inerte attraverso il collare del forno
- Lega resistente al calore 314 (AISI) (materiale n. 1.4841 secondo DIN)
- Termocoppia carica tipo K per indicazione della temperatura o regolazione della carica

Dotazione aggiuntiva

- A partire da LH 30/.. è consigliabile l'uso di un carrello di caricamento vedi pagina 62
- Sistemi di gasaggio vedi pagina 60
- Prolunga tubi gas per l'utilizzo di cassette più piccole in modelli di forni grandi
- Asta con gancio
- Elevatore di caricamento vedi pagina 63

Codice	Forno	Dimens	sioni interne	e in mm	Dimens	ioni esterne	e in mm¹	Sistema di caricamento
articolo		largh.	prof.	h	Largh.	Prof.	Н	della cassetta
631001276	LH 15/	100	100	100	165	182	166	asta con gancio
631001277	LH 30/	170	170	170	235	252	236	asta con gancio
631001278	LH 60/	250	250	250	315	332	316	asta con gancio
631001279	LH 120/	350	350	350	415	411	441	asta con gancio
631001280	LH 216/	450	450	400	514	535	554	elevatore di caricamento

Codice articolo 601655055, 1 lotto di cordone di tenuta a fibra, composto di 5 strisce di 610 mm caduna Spazio utile = dimensioni interne della cassetta - 30 mm su tutti i lati

¹ Senza tubi

Cassette più grandi e di dimensioni speciali su richiesta

Cassetta di gasaggio da lasciare nel forno

Cassette di gasaggio con caricamento da davanti

Design come per le cassette di gasaggio descritte, ma con caricamento da davanti. Queste cassette di gasaggio restano nel forno e sono dotate di un coperchio che si apre davanti. Dopo l'apertura del coperchio è possibile prelevare la carica direttamente.

Codice	Forno	Dimen	sioni interne	e in mm	Dimens	ioni esterne	e in mm¹	Sistema di caricamento
articolo		largh.	prof.	h	Largh.	Prof.	Н	della cassetta
631001310	LH 15/	100	100	100	170	148	194	-
631001311	LH 30/	170	170	170	240	218	264	-
631001312	LH 60/	250	250	250	320	298	344	-
631001313	LH 120/	350	350	350	420	398	444	-

Codice articolo 601655055, 1 lotto di cordone di tenuta a fibra, composto di 5 strisce di 610 mm caduna Spazio utile = dimensioni interne della cassetta - 30 mm su tutti i lati Cassette più grandi e di dimensioni speciali su richiesta

¹ Senza tubi

Cassette di gasaggio con coperchio di evacuazione per modelli LH 15/.. - LH 216/..

Design come per le cassette di gasaggio descritte, ma con ulteriore coperchio per evacuazione. Per ridurre al minimo l'ossigeno residuo nella cassetta di gasaggio, è possibile utilizzare cassette di gasaggio con coperchio per evacuazione. Queste cassette di gasaggio dispongono di un coperchio per il caricamento dall'alto, entrata e uscita gas inerte e di un coperchio per evacuazione con guarnizione in gomma. I tubi per il gas e la movimentazione in condizioni calde corrisponde alle cassette di gasaggio a pag. 48. È inoltre previsto un collegamento per una pompa per vuoto attraverso una valvola a sfera a tre vie.

In combinazione con una pompa per vuoto, nello stato freddo l'ossigeno viene evacuato dalla cassetta e lavato con gas inerte. Ripetendo l'operazione una o più volte si migliorano notevolmente i risultati. Dopo questa operazione il coperchio per evacuazione viene rimosso e inizia il processo di trattamento termico vero e proprio in gas inerte. Dopo il trattamento termico la cassetta viene rimossa dal forno e può essere raffreddata all'aria o aperta per l'estrazione della carica.

Cassetta di gasaggio con coperchio di evacuazione

Dotazione standard

- Cassetta di gasaggio con guarnizione in fibra e coperchio con blocchetto di chiusura, incavo per coperchio
 per evacuazione, alimentazione di gas inerte attraverso un tubo nel fondo della cassetta
- Coperchio per evacuazione con guarnizione in gomma (elastomero) e manometro
- Allacciamento per gas inerte tramite valvola a sfera a tre vie e giunto rapido con attacco tubo (diametro interno 9 mm)

Dotazione aggiuntiva

- Pompa per vuoto vedi pagina 61
- Sistemi di gasaggio vedi pagina 60
- Prolunga tubi gas per l'utilizzo di cassette più piccole in modelli di forni grandi
- Asta con gancio, a partire da LH 30/.. è consigliabile l'uso di un carrello di caricamento vedi pagina 62
- Elevatore di caricamento vedi pagina 63

Codice	Forno	Dimens	sioni interne	e in mm Dimensioni ester			e in mm¹	Sistema di caricamento
articolo		largh.	prof.	h	Largh.	Prof.	Н	della cassetta
631001281	LH 15/	100	100	100	152	180	160	asta con gancio
631001282	LH 30/	170	170	170	222	252	230	asta con gancio
631001283	LH 60/	250	250	250	302	332	310	asta con gancio
631001284	LH 120/	350	350	350	402	432	405	asta con gancio
631001285	LH 216/	450	450	400	506	535	540	elevatore di caricamento

Codice articolo 601655055, 1 lotto di cordone di tenuta a fibra, composto di 5 strisce di 610 mm caduna

Spazio utile = dimensioni interne della cassetta - 30 mm su tutti i lati

Cassette più grandi e di dimensioni speciali su richiesta

¹ Senza tubi e coperchio per evacuazione

Piastre di caricamento per modelli LH 15/.. - LH 216/..

Si consiglia l'utilizzo di piastre di caricamento per non rovinare il fondo del forno. In particolare nel caso di trattamenti termici con cassette di gasaggio, le piastre di caricamento sono indicate per ridurre al minimo l'usura durante il caricamento.

Dotazione standard

Piastra di caricamento

- Tmax 1100 °C
- Bordo rialzato su tre lati
- Lega resistente al calore 314 (AISI) (materiale n. 1.4841 secondo DIN)
- Con distanziatore rispetto agli elementi riscaldanti del retro

	•			
Codice	Forno	Dim	ensioni esterne in mi	m
articolo		Largh.	Prof.	Н
628002013	LH 15/	190	230	30
628002014	LH 30/	260	300	30
628002015	LH 60/	340	400	30
628002016	LH 120/	440	500	30
628002017	LH 216/	540	600	30

Forni a camera con estrazione a cassetto

I forni a camera della serie NW consentono il semplice caricamento per processi freddo-freddo. Il trattamento termico può essere effettuato in aria o in gas inerti non infiammabili con una cassetta di gasaggio o una campana di gasaggio. Con un meccanismo a cassetto (NW 150 - NW 300/H) la base del forno a camera può essere facilmente estratta. I modelli più grandi NW 440 - NW 1000/H sono stati progettati come forno a carro con movimento completamente libero del carrello. L'accesso libero di fronte al forno a camera consente un caricamento facilitato e ben visibile.

Forno a camera NW 300

Forno a camera NW 440

Versione standard

- Tmax 1300 °C, 1100 °C con cassetta di gasaggio (dotazione aggiuntiva)
- Struttura a doppia parete, lamiere in acciaio zincato
- Porta a doppia parete con frontale realizzato in acciaio inossidabile strutturato
- Controller montato sulla porta del forno e removibile per una comoda operatività (fino al modello NW 440)
- Riscaldamento da cinque lati con particolare disposizione degli elementi riscaldanti per un'ottimale uniformità della temperatura
- = Elementi riscaldanti in tubi di supporto favoriscono la libera dissipazione del calore
- Isolamento multistrato con leggeri mattoni refrattari e di alta qualità, isolamento posteriore a risparmio energetico
- Esclusivo uso di materiali isolanti senza categorizzazione in conformità al Regolamento CE n. 1272/2008 (CLP). Questo significa esplicitamente che non viene utilizzata lana di silicato di alluminio, conosciuta anche come "fibra ceramica refrattaria" (RCF) classificata come possibile cancerogeno.
- Struttura con copertura a volta
- Base del forno in versione cassetto estraibile (NW 150 NW 300)
- Dal forno a camara NW 440 a carro su quattro ruote (due con freno), che può essere tirato fuori completamente. Movimento assistito del carrello e timone removibile.
- Protezione del riscaldamento del fondo mediante copertura a piastra di carburo di silicio, base d'appoggio piana per l'impilamento
- Isolamento della porta smerigliato a mano (mattone su mattone); NW 150 NW 300
- Il flap di ingresso aria semiautomatico chiude la presa d'aria alla temperatura che può essere impostata dal regolatore (NW 150 - NW 300)
- Presa d'aria nella copertura esterna, flap aria di scarico motorizzate nel forni a camera NW 440 - NW 1000
- Comoda altezza di caricamento di 800 mm con basamento (forni a camera NW 440 -NW 1000 = 500 mm)
- Applicazione definita entro i limiti delle istruzioni per l'uso
- NTLog per controller Nabertherm: registrazione dei dati di processo con USB flash drive
- Per la descrizione della regolazione vedi pagina 76

Dotazione aggiuntiva

- Cassette di gasaggio e campane di gasaggio
- Sistema di gasaggio manuale o automatico
- Controllo dei processi e documentazione mediante pacchetto software VCD o Nabertherm Control-Center NCC per il monitoraggio, la documentazione e la gestione vedi pagina 76

Modello	Tmax	Dimens	ioni intern	e in mm	Volume	Dimensi	oni esterne	e¹ in mm	Potenza	Allaccia-	Peso
	°C	largh.	prof.	h	in I	LARGH.	PROF.	Н	allacciata kW	mento elettrico*	in kg
NW 150	1300	430	530	620	150	790	1150	1600	11,0	trifase	400
NW 200	1300	500	530	720	200	860	1150	1700	15,0	trifase	460
NW 300	1300	550	700	780	300	910	1320	1760	20,0	trifase	560
NW 440	1300	600	750	1000	450	1000	1400	1830	30,0	trifase	970
NW 660	1300	600	1100	1000	660	1000	1750	1830	40,0	trifase	1180
NW 1000	1300	800	1000	1250	1000	1390	1760	2000	57,0	trifase	1800

*Per le indicazioni sulla tensione di alimentazione vedi pagina 80 'Le dimensioni esterne variano in caso di dotazione aggiuntiva. Dimensioni su richiesta.

Cassette di gasaggio e campane di gasaggio per forni a camera NW 150 - NW 1000

Forno a camera NW 200 con cassetta di gasaggio

Campana di gasaggio per forni analoghi

Due sistemi di gasaggio automatici tra loro abbinati

Cassette di gasaggio

Queste cassette di gasaggio dispongono di un coperchio con profilo di tenuta ed entrata e uscita gas inerte. A forno freddo vengono estratte dal forno e caricate dall'alto.

Dotazione standard

- Tmax 1100 °C
- Per gas inerti e di reazione incombustibili come argon, azoto e miscela azotidrica (rispettare le norme nazionali)
- Cassetta di gasaggio con guarnizione in fibra e coperchio con blocchetto di chiusura, alimentazione di gas inerte attraverso un tubo nel fondo della cassetta
- Allacciamento per gas inerte mediante giunto rapido con attacco tubo (diametro interno 9 mm)
- Tubi per entrata e uscita gas inerte attraverso il collare del forno
- Alloggiamenti per carrello elevatore
- Lega resistente al calore 314 (AISI) (materiale n. 1.4841 secondo DIN)
- Termocoppia carica tipo K per indicazione della temperatura o regolazione della carica

Campane di gasaggio

Le campane di gasaggio sono formate dalla campana e dalla base con profilo di tenuta ed entrata e uscita gas inerte. Dopo aver caricato la base della campana davanti al forno freddo, la campana viene messa su e il cassetto o il carrello viene spinto nel forno.

Esecuzione come cassetta di gasaggio, ma

- Campana di gasaggio con maniglia per sollevare la campana con la gru
- Base della campana con profilo di tenuta
- Tubi per entrata e uscita gas inerte dalla campana attraverso il collare del forno

Dotazione aggiuntiva

Sistemi di gasaggio vedi pagina 60

Forno	Codice articolo	Dimens	sioni interne	in mm	Codice articolo	Dimen	sioni interne	e in mm	Caricamento del forno
	Cassette di gasaggio	largh.	prof.	h	Campana di gasaggio	largh.	prof.	h	
NW 150	631001329	330	420	400	631001334	300	360	400	Estrazione
NW 200	631001330	400	420	500	631001335	370	360	450	Estrazione
NW 300	631001331	450	550	550	631001336	420	530	500	Estrazione
NW 440	631001332	500	600	750	631001337	470	580	550	Su suola mobile
NW 660	631001333	500	750	750	631001338	470	750	550	Su suola mobile
NW 1000				su ri	chiesta				Su suola mobile

Forni a camera riscaldamento elettrico

Questi forni a camera universali con riscaldamento a radiazione sono appositamente studiati per le applicazioni più gravose in officina e nell'industria. Essi sono ideali per i processi relativi alla costruzione di utensili e nei trattamenti termici come la ricottura, la tempra o la fucinatura. Grazie all'impiego di una vasta gamma di accessori, questi forni sono perfettamente adattabili ad ogni tipo di applicazione.

Forno di ricottura N 7/H, modello da banco con cassetta gas protettivo opzionale

Forno a camera N 41/H con cassetta gas protettivo opzionale

Versione standard

- Costruzione compatta e robusta con struttura a doppia parete
- La porta può essere aperta quando il forno è caldo
- Forno a camera profondo con riscaldamento da 3 lati: pareti e fondo
- Elementi riscaldanti in tubi di conduzione per una rapida diffusione del calore e una lunga durata
- Riscaldamento sicuro del piano del forno mediante una lastra in SiC a temperatura costante (modelli N 81/.. - N 641/.. anche con piastre laterali SiC)
- Parte superiore della porta protetta con lamiere in acciaio inossidabile contro bruciature all'apertura del forno a temperature elevate fino al modello N 87/H.
 Modelli N 81/ ... - N 641/ .. Pannello porta in acciaio inossidabile.
- Uniformità della temperatura secondo DIN 17052-1 fino a +/- 10 °C vedi pagina 72
- Basso consumo energetico grazie alla struttura isolante multistrato
- Basamento compreso nella fornitura, N 7/H N 17/HR realizzato come modello da tavolo
- Apertura di scarico dell'aria sul lato del forno, dal forno a camara N 31/H sulla parete posteriore del forno
- Porta a battente parallela (utilizzatore protetto dall'irraggiamento termico) fino a N 87/H guidata verso il basso, da N 81 guidata verso l'alto
- Movimento della porta con ammortizzatore/molla a gas compresso
- Vernice zincata ad alta resistenza al calore per la protezione della porta e della cornice (per modello N 81 e maggiori)
- NTLog Basic per controller Nabertherm: registrazione dei dati di processo con USB flash drive
- Controller B500 con operatività touch (5 programmi da 4 segmenti ciascuno), per la descrizione della regolazione vedi pagina 76
- NTGraph gratuito per un comodo inserimento del programma tramite Excel™ per MS Windows™ sul PC
- NTEdit gratuito per un comodo inserimento del programma tramite Excel™ per MS Windows™ sul PC
- L'app MyNabertherm per il monitoraggio online della cottura su dispositivi mobili scaricabile gratuitamente

Dotazione aggiuntiva

- Protezione degli elementi riscaldanti laterali con copertura a piastre in carburo di silicio (Modelli N 7/H - N 87/H)
- Porta con tubo ceramico di 18 cm incluso tappo a vite (Modelli N 7/H N 87/H)
- Apertura porta pneumatica con comando a pedale (Modelli N 31/H N 641/13)
- Cassette digasaggio per il trattamento termico con gas inerti e di reazione non infiammabili
- Raccordi alimentazione gas
- Dispositivi di caricamento
- Regolazione carica

Forno a camara N 87/H

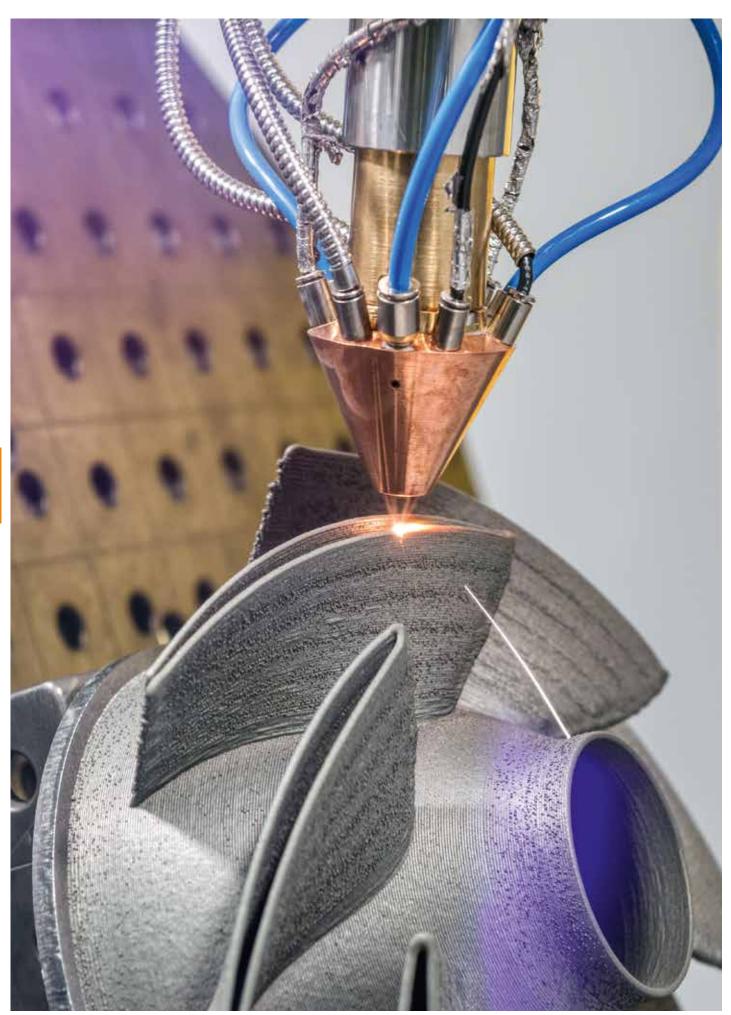
Forno a camera N 81/13 con porta ad alzata pneumatica

Мо	odello	Tmax	Dimer	nsioni interne	in mm	Volume	Dimen	sioni esterne	in mm	Potenza termica	Allacciamento	Peso
		°C	largh.	prof.	h	in I	LARGH.	PROF.	Н	in kW ³	elettrico*	in kg
N	7/H ¹	1280	250	250	140	9	800	650	600	3,0	monofase	60
N	11/H1	1280	250	350	140	11	800	750	600	3,5	monofase	70
N	11/HR1	1280	250	350	140	11	800	900	600	5,5	trifase ²	70
N	17/HR ¹	1280	250	500	140	17	800	900	600	6,4	trifase ²	90
Ν	31/H	1280	350	350	250	30	1040	1030	1340	15,0	trifase	210
N	41/H	1280	350	500	250	40	1040	1180	1340	15,0	trifase	260
N	61/H	1280	350	750	250	60	1040	1430	1340	20,0	trifase	400
N	87/H	1280	350	1000	250	87	1040	1680	1340	25,0	trifase	480
N	81	1200	500	750	250	80	1300	2000	2000	20,0	trifase	950
N	161	1200	550	750	400	160	1350	2085	2300	30,0	trifase	1160
N	321	1200	750	1100	400	320	1575	2400	2345	47,0	trifase	1570
N	641	1200	1000	1300	500	640	1850	2850	2650	70,0	trifase	2450
N	81/13	1300	500	750	250	80	1300	2000	2000	22,0	trifase	970
N	161/13	1300	550	750	400	160	1350	2085	2300	35,0	trifase	1180
N	321/13	1300	750	1100	400	320	1575	2400	2345	60,0	trifase	1600
N	641/13	1300	1000	1300	500	640	1850	2850	2650	80,0	trifase	2500

¹Per il modello da banco

*Per le indicazioni sulla tensione di alimentazione vedi pagina 80

Lavoro con cassetta di cottura per l'atmosfera gassosa protettivi mediante l'ausilio di un carrello di carico


Forno a camara N 7/H come modello da tavolo

Forno a camera profondo con riscaldamento da 3 lati

²Riscaldamento solo tra due fasi

³Potenza allacciata, a seconda del modello del forno potrebbe essere superiore ⁴Le dimensioni esterne variano in caso di dotazione aggiuntiva. Dimensioni su richiesta.

Cassette di gasaggio per modelli N 7/H - N 641/13

Queste cassette di ricottura sono attrezzate per trattamenti termici sotto gas inerte con tubi di ingresso e uscita gas. È consigliabile utilizzare una cassetta con gasaggio quando si desiderano trattare termicamente i pezzi in condizioni definite. Su richiesta si possono effettuare prove nel nostro centro prove. Fino al modello di forno N 61/H con apertura porta verso il basso i tubi per il gas passano nella parte superiore attraverso il collare porta, in caso di forni più grandi con apertura porta verso l'alto i tubi passano nella parte inferiore del collare porta.

Attraverso il tubo di gas inerte la cassetta viene alimentata con gas inerti e di reazione non infiammabili, come argon, azoto o miscela azotidrica. Sono disponibili sistemi di gasaggio manuali ed automatici. Per ulteriori informazioni sui gas inerti utilizzabili e sui sistemi di gasaggio manuali ed automatici disponibili consultare le pagine 60 - 61.

Dopo il caricamento della cassetta, questa viene sigillata e prelavata al di fuori del forno. Dopodiché la cassetta è inserita nel forno preriscaldato. La quantità di gas può essere ridotta alla portata di processo. Dopo il trattamento termico la cassetta viene rimossa dal forno, la carica viene estratta dalla cassetta ed immersa nel mezzo di raffreddamento. È consigliabile dotare i pezzi di filo metallico per poterli afferrare meglio con una pinza.

Per la misurazione della temperatura nella cassetta è presente una termocoppia flessibile di tipo K, da collegare ad uno strumento digitale o ad un registratore di temperatura.

La cassetta può essere raffreddata in stato chiuso su un tavolo di raffreddamento. Tenere presente che con questo tipo di applicazione dovrà essere aumentata la portata di gas inerte.

Cassetta con raccordo gas

Carrello di caricamento con cassetta di gasaggio e forno

Dotazione standard

- Tmax 1100 °C
- Per gas inerti e di reazione incombustibili come argon, azoto e miscela azotidrica (rispettare le norme nazionali)
- Cassetta di gasaggio con guarnizione in fibra e coperchio, alimentazione di gas inerte attraverso un tubo nel fondo della cassetta
- Allacciamento per gas inerte mediante giunto rapido con attacco tubo (diametro interno 9 mm)
- Tubi per entrata e uscita gas inerte attraverso il collare del forno
- Lega resistente al calore 314 (AISI) (materiale n. 1.4841 secondo DIN)
- Termocoppia carica tipo K per indicazione della temperatura o regolazione della carica

Dotazione aggiuntiva

- A partire da N 31/H è consigliabile l'uso di un carrello di caricamento vedi pagina 62
- Sistemi di gasaggio vedi pagina 60
- Forcelle di caricamento vedi pagina 57
- Asta con gancio

Codice articolo Forno		Dimensioni interne in mm			Dimensioni esterne in mm ¹			Portata prelavaggio	Portata lavaggio di processo	Sistema di caricamento
		largh.	prof.	h	Largh.	Prof.	Н	l/min	I/min	della cassetta
631000963	N 7/H	180	190	90	216	226	116	15 - 20	5 - 8	asta di caricamentol
631000968	N 11/H, N 11/HR	180	290	90	216	326	116	15 - 20	5 - 8	asta di caricamentol
631000973	N 17/HR	180	440	90	216	476	116	15 - 20	5 - 8	asta di caricamentol
631000978	N 31/H	280	230	200	316	304	226	20 - 25	10 - 15	asta con gancio
631000983	N 41/H	280	380	200	316	454	226	20 - 25	10 - 15	asta con gancio
631000987	N 61/H, N 87/H	280	500	200	316	574	226	20 - 25	10 - 15	asta con gancio
631000392	N 81, N 81/13	394	494	185	462	530	212	20 - 30	10 - 20	elevatore di caricamento
631000393	N 161, N 161/13	450	550	250	515	596	355	20 - 30	10 - 20	elevatore di caricamento
631000607	N 321, N 321/13	470	850	185	580	960	330	20 - 30	10 - 20	elevatore di caricamento
631000608	N 641, N 641/13	720	1050	270	830	1160	414	20 - 30	10 - 20	elevatore di caricamento

Codice articolo 601655055, 1 lotto di cordone di tenuta a fibra, composto di 5 strisce di 610 mm caduna

Spazio utile = dimensioni interne della cassetta - 30 mm su tutti i lati

Cassette più grandi e di dimensioni speciali su richiesta

Cassette di gasaggio con coperchio di evacuazione per modelli N 7/H - N 161/13

Per il trattamento termico di materiale sfuso e di pezzi con cavità in atmosfera di gas inerte è consigliabile l'utilizzo di cassette di gasaggio con coperchio supplementare di evacuazione.

Queste cassette sono dotate di un coperchio per il caricamento dall'alto, di tubo di ingresso e uscita gas nonché di un coperchio di evacuazione con guarnizione in gomma. I tubi del gas e la manipolazione a caldo sono equivalenti a quanto riportato per le cassette di gasaggio a pagina 55. In più queste cassette dispongono di un raccordo con valvola di intercettazione per la pompa per vuoto.

Dopo il caricamento a freddo, la cassetta viene evacuata e quindi effettuato un lavaggio con gas inerte. Ripetendo la procedura una o più volte i risultati potranno essere migliorati considerevolmente. Dopo aver lavato la cassetta un'ultima volta con il gas inerte, viene rimosso il coperchio di evacuazione dalla cassetta e quest'ultima può essere inserita nel forno preriscaldato. Il trattamento termico avviene sotto gas inerte. In tal modo può essere ridotto considerevolmente l'ossigeno residuo nella cassetta migliorando consequentemente la qualità dei componenti.

Dopo il trattamento termico la cassetta viene tirata fuori dal forno e raffreddata all'aria ovvero aperta per poter rimuovere la carica.

La cassetta può essere raffreddata anche in stato chiuso su un tavolo di raffreddamento. Tenere presente che con questo tipo di applicazione dovrà essere aumentata la portata di gas inerte.

Cassetta di gasaggio per modello di forno N 41/H con coperchio di evacuazione

Dotazione standard

- Tmax 1100 °C
- Per gas inerti e di reazione incombustibili come argon, azoto e miscela azotidrica (rispettare le norme nazionali)
- Cassetta di gasaggio con guarnizione in fibra e coperchio con blocchetto di chiusura, incavo per coperchio
 per evacuazione, alimentazione di gas inerte attraverso un tubo nel fondo della cassetta
- Coperchio per evacuazione con guarnizione in gomma (elastomero) e manometro
- Allacciamento per gas inerte tramite valvola a sfera a tre vie e giunto rapido con attacco tubo (diametro interno 9 mm)
- Tubi per entrata e uscita gas inerte attraverso il collare del forno
- Lega resistente al calore 314 (AISI) (materiale n. 1.4841 secondo DIN)
- Termocoppia carica tipo K per indicazione della temperatura o regolazione della carica

Dotazione aggiuntiva

- A partire da N 31/H è consigliabile l'uso di un carrello di caricamento vedi pagina 62
- Pompa per vuoto vedi pagina 61
- Sistemi di gasaggio vedi pagina 60
- Forcelle di caricamento vedi pagina 57
- Asta con gancio

Codice articolo	Forno	Dimens	sioni intern	e in mm	Dimensioni esterne in mm ¹		Portata prelavaggio	Portata lavaggio di Sistema di caricam		
									processo	
		largh.	prof.	h	Largh.	Prof.	Н	l/min	I/min	della cassetta
631000966	N 7/H	170	170	70	212	212	106	15 - 20	5 - 8	asta di caricamentol
631000971	N 11/H, N 11/HR	170	270	70	212	312	106	15 - 20	5 - 8	asta di caricamentol
631000976	N 17/HR	170	420	70	212	462	106	15 - 20	5 - 8	asta di caricamentol
631000981	N 31/H	250	200	150	292	242	178	20 - 25	10 - 15	asta con gancio
631000985	N 41/H	250	350	150	292	392	178	20 - 25	10 - 15	asta con gancio
631000989	N 61/H, N 87/H	250	500	150	292	542	178	20 - 25	10 - 15	asta con gancio
631000526	N 81, N 81/13	354	494	185	422	905	215	20 - 30	10 - 20	elevatore di caricamento
631000527	N 161, N 161/13	400	550	250	468	965	350	20 - 30	10 - 20	elevatore di caricamento

Codice articolo 601655055, 1 lotto di cordone di tenuta a fibra, composto di 5 strisce di 610 mm caduna

Spazio utile = dimensioni interne della cassetta - 30 mm su tutti i lati

¹ Senza tubi e coperchio per evacuazione Cassette più grandi e di dimensioni speciali su richiesta

Piastre di caricamento per modelli N 7/H - N 641/13

Questo accessorio è consigliato per applicazioni fino a 1100 °C per proteggere il fondo del forno, in particolare in caso di utilizzo di carrelli di caricamento.

Piastra di caricamento

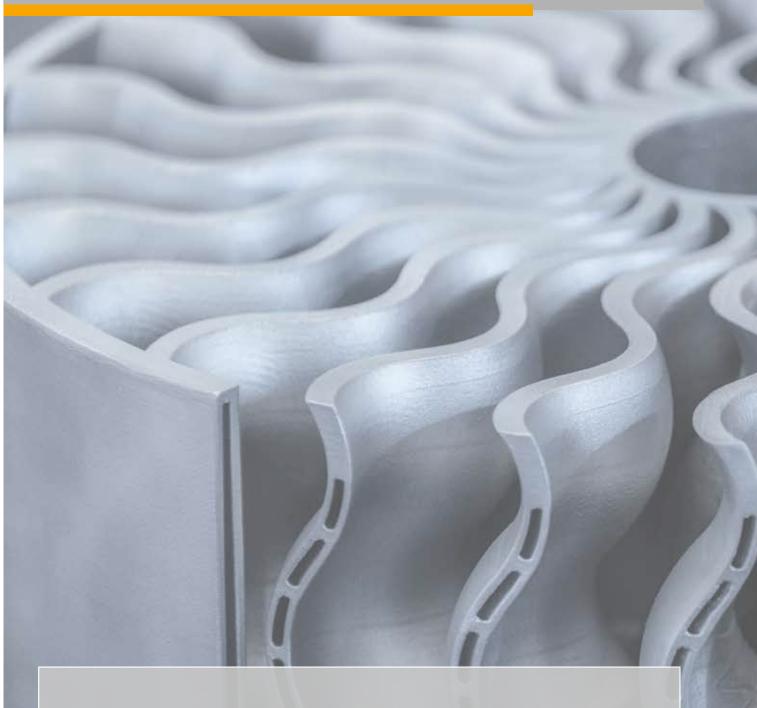
Dotazione standard

- Tmax 1100 °C
- Bordatura in rilievo su tre lati
- Lega resistente al calore 314 (AISI) (materiale n. 1.4841 secondo DIN)
- Piastre più grandi e di dimensioni speciali su richiesta

Codice articolo	Forno	Dimensioni esterne in mm				
		Largh.	Prof.	Н		
628000138	N 7/H	240	290	25		
628000139	N 11/H, N 11/HR	240	390	25		
628000141	N 17/HR	240	540	30		
628000400	N 31/H	340	390	30		
628000133	N 41/H	340	540	30		
628000142	N 61/H	340	790	30		
628001925	N 87/H	340	1040	30		
628000143	N 81, N 81/13	480	790	30		
628000144	N 161, N 161/13	530	790	30		
628000145	N 321, N 321/13	720	1140	30		
628000146	N 641, N 641/13	950	1330	30		

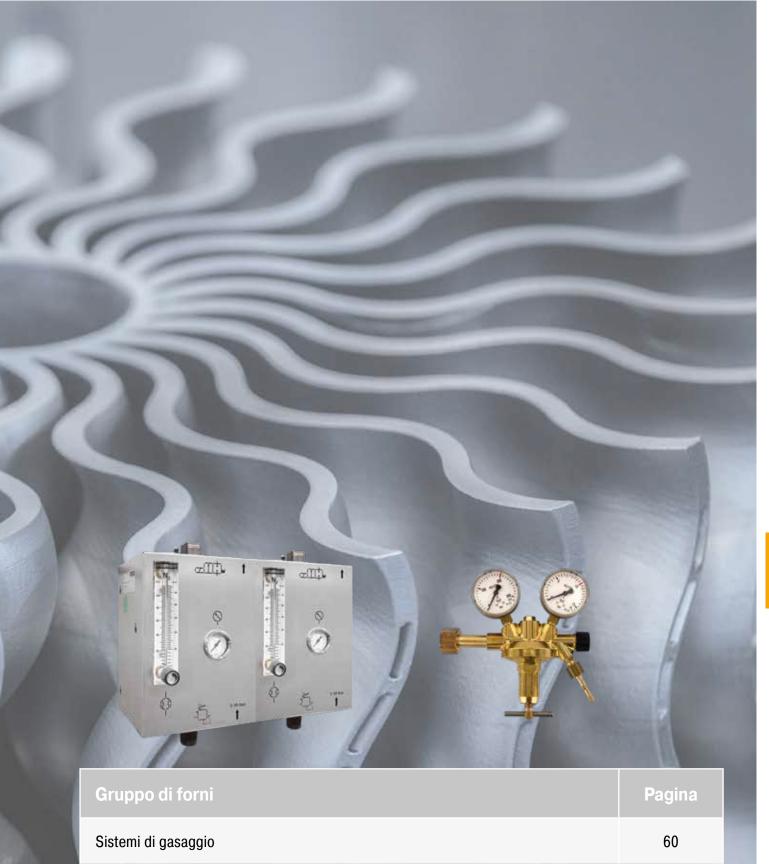
Forcelle di caricamento

Forcelle di caricamento per inserimento e rimozione di cassette di ricottura e gasaggio fino al modello N 17/H



 Codice articolo
 Forno

 631001016
 N 7/H, N 11/H(R)


 631001017
 N 17/HR

Equipaggiamenti aggiuntivi come sistemi di flussaggio del gas per diversi gas di processo non combustibili, adattati alle cassette di gasaggio per forni a camera e a convezione. Gli impilatori e i carrelli di ricarica supportano il carico e lo scarico.

Gruppo di forni	Pagina
Sistemi di gasaggio	60
Gruppo pompa per vuoto	61
Tavoli di raffreddamento e dispositivi di caricamento	62

Sistemi di gasaggio

Gas inerti

I gas inerti servono ad allontanare l'ossigeno dalle cassette di gasaggio descritte in alto. Devono essere utilizzati i gas inerti che si comportano in modo neutrale rispetto al pezzo trattato termicamente. Questi gas devono essere inerti, cioè non devono formare legami chimici con il pezzo o il forno né innescare reazioni chimiche.

In molti casi viene utilizzato l'azoto (che è più leggero dell'aria) come gas inerte. La nostra esperienza evidenzia che l'azoto non produce sempre risultati sufficienti. Inoltre deve essere effettuata una durata di prelavaggio più lunga.

Risultati migliori sono ottenuti con una miscela di azoto ed una piccola quantità di idrogeno. L'idrogeno agisce da componente riducente e reagisce con l'ossigeno. Questa miscela è reperibile in commercio con la denominazione, miscela azotidrica'. Le esperienze hanno dimostrato che un'aggiunta del 5 % di idrogeno all'azoto produce buoni risultati. Secondo la scheda tecnica di sicurezza dell'Unione Europea questa miscela è considerata come non infiammabile, ma devono essere comunque rispettate le norme nazionali vigenti. Questo gas può essere acquistato in stato già miscelato. Non è necessario adottare particolari precauzioni contro esplosione.

Se il pezzo da trattare presenta un'affinità verso l'idrogeno, l'utilizzo di argon come gas inerte può produrre buoni risultati.

L'argon è più pesante dell'aria. È relativamente facile riempire i contenitori con questi gas. La miscela azotidrica con idrogeno aggiunto (fino a un rapporto di 98/2, secondo le norme nazionali) è più leggera, ma ha il vantaggio che brucia a temperature più elevate riducendo in tal modo l'ossigeno. Anche allo stato freddo l'idrogeno uscente trasporta molto facilmente l'ossigeno fuori dal contenitore.

Nel caso di miscele di gas con idrogeno o altri gas infiammabili, rispettare sempre le norme di sicurezza vigenti. Se la miscela è dichiarata come miscela infiammabile, è possibile dotare il forno di un sistema di sicurezza adeguato, a condizione che sia un modello a tenuta di gas.

Per il lavoro con gas inerti si dovrà provvedere sempre ad un'aerazione sufficiente dell'ambiente. In più devono essere rispettate le norme di sicurezza vigenti nel rispettivo paese.

Sistema di flussaggio automatico del gas

Sistema automatico di erogazione del gas per portata da 4 l a 50 l/min

- Sistema di erogazione del gas montato sul forno in un alloggiamento compatto in acciaio inossidabile
- Il flusso di gas può essere attivato in ogni segmento tramite elettrovalvola dal controller; portata preimpostata manualmente
- Ingresso gas: 1 bar 10 bar, attacco tubo: Øi = 9 mm
- Uscita gas: attacco tubo: Øi = 9 mm
- Il sistema include:
 - Elettrovalvola con collegamento al controller
 - Flussimetro (scala come adesivo)
 - Regolazione manuale della portata tramite vite e valvola a spillo
 - Riduttore di pressione per la regolazione della pressione di erogazione
 - Manometro per la lettura della pressione di alimentazione
 - Set di connessione per forno
 - 5 m tubo di collegamento 9 mm
 - Raccordo rapido (G1/4) per ingresso gas

Codice	Tipo di gas	Portata
articolo	·	I/min
6000085544	indipendente dal tipo di gas	4 - 50

Sistema automatico di flussaggio del gas con due portate 2 x 4 I - 50 I/min

- Sistemi di flussaggio del gas montati sul forno in alloggiamenti compatti in acciaio inossidabile
- Due sistemi di alimentazione del gas combinati a seconda del collegamento per 2 quantità di gas, 2 tipi di gas o grandi quantità di gas
- Il flussaggio del gas può essere attivato in ogni segmento tramite 2 elettrovalvole, selezionabili in modo indipendente tramite il controller. Portate gas preimpostate manualmente
- Entrata gas: 1 bar 10 bar, attacco tubo flessibile Øi = 9 mm
- Uscita gas: attacco tubo flessibile Øi = 9 mm
- Il sistema include 2 sistemi combinati, ciascuno con
 - Elettrovalvola con collegamento al controller
 - Flussometro (scala come adesivo)
 - Regolazione manuale della portata tramite vite e valvola a spillo
 - Riduttore di pressione per la regolazione della pressione di alimentazione
 - Manometro per la lettura della pressione di alimentazione
 - Set di connessione per forno
 - Tubo di collegamento 5 m 9 mm
 - Raccordo rapido (G1/4) per ingresso gas

Codice articolo	Tipo di gas	Portata I/min
6000085545	indipendente dal tipo di gas	2 x 4 - 50 or 4 - 100

Sistema automatico di alimentazione del

gas per due quantità di flussaggio

Connessione per bombola del gas

Collegamento della bombola del gas

- Con questa opzione, i sistemi di alimentazione del gas possono essere collegati a comuni bombole di gas
- Connessione alla bombola con:
 - Riduttore di pressione
 - Manometro per la pressione in ingresso
 - Manometro per pressione in uscita

Codice articolo.	Tipo di gas	Filettatura della bombola del gas
6000085489	Argon	W21,8x1/14" (EU)
6000085490	Azoto	W24.32x1/14"RH (EU)
6000085491	Forming gas (95/5 e 98/2)	W21,8x1/14"LH(EU)
6000085492	Argon	W21.8x1/14"R (ES, FR, PT)
6000085493	Azoto	W21.8x1/14"R (ES, FR, PT)
6000085494	Forming gas (95/5 e 98/2)	W21.8L (ES, FR, PT)

Gruppo pompa per vuoto

Pompa per vuoto

Pompa per vuoto a cassetta rotante con tenuta a olio per un utilizzo universale per vuoto grossolano. Costruzione estremamente compatta e funzionamento dolce. Manometro in dotazione.

- Pompa per vuoto a palette con una capacità di aspirazione di max. 16 m³/h
- 0,5 mbar assoluti
- Tubo di collegamento di 2000 mm in acciaio inossidabile
- Raccordo KF 16
- Manometro (-1/0,6 bar)

Codice articolo	Dimensi	oni esterr	ne in mm	Raco	cordi lato di aspirazione	Potenza Tensione di		Portata nominale Portata di aspirazione	
	Largh.	Prof.	Н			allacciata	alimentazione*	m³ h	m³ h-l
601403057	280	315	200	3/4``	1/2" filettatura interna	0,55 KW	230 V	16	15

^{*}Codici di articolo per altre tensioni di allacciamento disponibili su richiesta

Tavoli di raffreddamento per modelli N 17/HR, N 61/H, N 161

I tavoli di raffreddamento sono utilizzati per il raffreddamento forzato di componenti meccanici o cassette di ricottura all'esterno del forno. Il tavolo può essere utilizzato inoltre per il caricamento della cassetta davanti al forno.

Ventilatore con 25 m³/min di aria ambiente

Codice	Forno	Dimens	ioni estern	e in mm	Potenza	Tensione di	Note
articolo		Largh.	Prof.	Н	allacciata/kW	alimentazione*	
631000429	fino a N 17/HR	550	610	760	0,2	230 V	come sistema di raffreddamento rapido ad aria MHS 17
631000529	fino a N 61/H	335	1100	880 - 920	0,2	230 V	come carrello di caricamento CWK1 (pag. 62)
631000294	fino a N 161	700	800	900	0,9	230 V	

^{*}Codici di articolo per altre tensioni di allacciamento disponibili su richiesta

Dispositivi di caricamento con e senza ventilatore di raffreddamento per modelli N 31/H - N 641/13, N 30/45 HA - N 500/85 HA, LH (LF) 15/.. - LH (LF) 216/..

Carrelli di caricamento CW(K) 1, CW(K) 15 e CW(K) 16

Per il caricamento di pezzi grandi e di cassette di ricottura.

- 4 ruote girevoli, liberamente movibile
- Dotato di griglia all'altezza di lavoro come piano di appoggio
- Bloccaggio per il fissaggio di sacchetti per ricottura (CWK)
- Versione CWK con ventilatore di raffreddamento (0,2 kW, 230 V)

Carrello di caricamento CWK1

Codice articolo	Denomina- zione	Forno	Dimensioni esterne in mm			
articolo	Zione		Largh.	Prof.	Н	
631000528	CW 1	N 31/H, N 41, N 61, N 30/HA, N 60/HA	330	1100	880 - 920	
631001320	CW 15	LH(LF) 15/ LH(LF) 60/	370	1100	760 - 800	
631001321	CW 16	LH(LF) 120/ LH(LF) 216/	470	1000	760 - 800	
631000529	CWK 1	N 31/H, N 41, N 61, N 30/HA, N 60/HA	330	1100	880 - 920	
631001322	CWK 15	LH(LF) 15/ LH(LF) 60/	370 + 100 ¹	1100	760 - 800	
631001323	CWK 16	LH(LF) 120/ LH(LF) 216/	$470 + 80^{1}$	1100	760 - 800	
O 11 NIA	00/ - NA CO/ -			1.1-4		

Codice per NA 30/.. e NA 60/.. su richiesta

¹ Interruttore laterale

Carrelli di caricamento CW 2 - CW 4 e CWK 2 - CWK 4

Per il caricamento di pezzi grandi e di cassette di ricottura.

- = 2 ruote girevoli, 2 ruote fisse
- Dotato di griglia all'altezza di lavoro come piano di appoggio
- Bloccaggio al forno tramite nottolino azionato con il piede
- Versione CWK con ventilatore di raffreddamento (0,9 kW, 230 V)

1	
V GS	
1	
	. 1 2
	3

Carrello di caricamento CW 2

Codice articolo	Denomina- zione	Forno	Dimens Largh.	sioni esterno Prof.	e in mm H
			ŭ		
631000530	CW 2	N 81, N 161, N 120/HA	500	1120	880 - 920
631000531	CW 3	N 321	800	1490	880 - 920 ²
631000468	CW 4	N 641	1040	1950	880 - 920 ²
631000469	CWK 2	N 81, N 161, N 120/HA	$500 + 80^{1}$	1120	880 - 920
631000470	CWK 3	N 321	$800 + 80^{1}$	1490	880 - 920 ²
631000471	CWK 4	N 641	1040 + 80 ¹	1950	880 - 920 ²

Codice per NA 120/.. su richiesta

^{*}Per le indicazioni sulla tensione di alimentazione vedi pagina 80

Elevatore di caricamento WS 1

Carrelli di caricamento WS 1

Per il caricamento di cassette di gasaggio e di ricottura.

- 2 ruote girevoli, 2 ruote fisse
- Con meccanismo di sollevamento parallelo
- Solo per cassette con piani di caricamento (dotazione standard a partire da 07.2018)
- Viene fornito con corsia d'accesso in base al modello del forno
- Ausilio di accesso e carrello di caricamento possono essere ordinati anche separatamente

Codice articolo	Denominazione	Forno
6000004965	WS 1	N 61/H, N 81, N 60/HA, N 120/HA, NA 60/, NA 120/, LH 60/, LH 120/

Elevatore di caricamento WS 50

Codice articolo corsia d'accesso	Forno
6000006118	NA 60/
6000006101	NA 120/
6000005811	LH 60/
6000005372	LH 120/
6000006155	N 61/H
su richiesta	N 81
su richiesta	N 60/HA
su richiesta	N 120/HA

Elevatore di caricamento WS 25 - WS 321

- Dispositivo di sollevamento con verricello manuale
- Costruzione compatta con maniglie e meccanismo di sollevamento manuale che consente un sollevamento facile e sicuro
- Due ruote girevoli, due ruote fisse
- Larghezza forche regolabile
- Peso di caricamento max. 500 kg
- Ausilio di accesso montato sul basamento del forno
- Ausilio di accesso e carrello possono essere ordinati anche separatamente

Ausilio di accesso nel basamento

Codice articolo	Denominazione	Forno
631000425	WS 161	N 161
631000370	WS 321	N 321
631000299	WS 25	N 250/HA
631000532	WS 50	N 500/HA

Codice per NA 250/.. e NA 500/.. su richiesta

Elevatore di caricamento WS 641 con forno a camera N 641 e ausilio di accesso nel basamento

Elevatore di caricamento WS 641

Esecuzione come elevatore di carico S 25 - S 321, ma

- Meccanismo idraulico di sollevamento manuale
- Peso di caricamento max. 700 kg

Codice articolo	Denominazione	Forno
631000426	WS 641	N 641

Forni per Debinding e Sinterizzazione fino a 1800 °C

Forni per il debinding fino a 600 °C e successiva sinterizzazione a 1800 °C in aria, ad esempio di componenti ceramici.

Corpo a pareti doppie in lamiere strutturate in acciaio con ventola di raffreddamento addizionale per mantenere basse le temperature esterne

Cappa di scarico in acciaio inox come interfaccia per il sistema di scarico fumi presso il cliente per i modelli fissi

Esclusivo uso di materiali isolanti senza categorizzazione in conformità al Regolamento CE n. 1272/2008 (CLP). Questo significa esplicitamente che non viene utilizzata lana di silicato di alluminio, conosciuta anche come "fibra ceramica refrattaria" (RCF) classificata come possibile cancerogeno.

NTLog Basic per controller Nabertherm: registrazione dei dati di processo con USB flash drive

Applicazione definita entro i limiti delle istruzioni per l'uso

Disponibile come dotazione aggiuntiva: controllo dei processi e documentazione tramite pacchetto software VCD per il monitoraggio, la documentazione e il controllo

Forni da incenerimento L ../11 BO fino a 1100 °C con post-combustione catalitica integrata

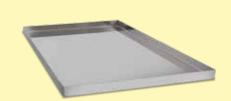
I forni da incenerimento L ../11 BO sono appositamente progettati per processi in cui le sostanze organiche devono essere eliminate dalla carica, come ad es. durante il deceraggio di piccoli prodotti ceramici dopo la produzione additiva. Altri processi per i quali è progettata questa serie di forni sono ad esempio l'incenerimento di campioni (alimentari), la pulizia termica di strumenti di stampaggio a iniezione o la determinazione della perdita alla combustione.

I forni di incenerimento dispongono quindi di un sistema di sicurezza passiva e di post combustione dei gas di scarico integrata. Un ventilatore per gas di scarico aspira i gas di scarico dal forno e contemporaneamente fornisce aria fresca all'atmosfera del forno, in modo che per il processo sia sempre disponibile ossigeno sufficiente. L'aria in entrata viene convogliata dietro il riscaldamento del forno e preriscaldata per garantire una buona uniformità della temperatura. I gas di scarico vengono convogliati direttamente dalla camera del forno al sistema di postcombustione integrato, dove vengono bruciati e puliti cataliticamente. Dopo il processo di deceraggio/incenerimento (fino a un massimo di 600 °C), è possibile eseguire un processo di sinterizzazione fino a un massimo di 1100 °C.

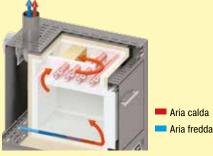
Forno di incenerimento L 40/11 BO

Versione standard

- Tmax 600 °C per il processo di incenerimento
- Tmax 1100 °C per il processo successivo
- Riscaldamento su tre lati (due lati e fondo)
- Piastre riscaldanti in ceramica con resistenze elettriche a filo integrate
- Vasca di raccolta in acciaio per proteggere il fondo del forno
- Chiusura della porta del forno a molla (porta ribaltabile) con blocco meccanico per impedire aperture involontarie
- Post-combustione termica/catalitica nel canale dell'aria di scarico, temperatura del forno in funzione max 600 °C
- Regolazione della temperatura della post-combustione regolabile fino a 850 °C
- Monitoraggio dell'aria di scarico
- Preriscaldamento dell'aria di alimentazione attraverso la piastra riscaldante del fondo
- Controller C550 con operatività touch (10 programmi da 20 segmenti ciascuno), per controller alternativi vedi pagina 80


Modello	Tmax	Dimensioni interne in mm Volume			Volume	Dimensioni esterne ² in mm			Peso di carica max. idrocarburi	Velocità max. di evaporazione	Potenza allacciata	Allacciamento	Peso
	in °C¹	largh.	prof.	h	in I	LARGH.	PROF.	H ³	in g	g/min	in kW	elettrico*	in kg
L 9/11 BO	1100	230	240	170	9	415	575	750	75	1,0	7,0	trifase	60
L 24/11 BO	1100	280	340	250	24	490	675	800	150	2,0	9,0	trifase	90
L 40/11 BO	1100	320	490	250	40	530	825	800	200	2,1	11,5	trifase	110

¹Temperatura consigliata per tempi di sosta prolungati 1000 °C


*Per le indicazioni sulla tensione di alimentazione vedi pagina 80

Forno di incenerimento L 9/11 BO

Vasca di raccolta in acciaio per proteggere il fondo del forno

Rappresentazione schematica della conduzione dell'aria nel forno di incenerimento L 24/11 BO

²Le dimensioni esterne variano in caso di dotazione aggiuntiva. Dimensioni su richiesta.

³Incl. tubetto di scarico aria viziata (Ø 80 mm)

Forni ad alta temperatura con elementi riscaldanti in MoSi₂; fino a 1800 °C

Realizzati come modelli da tavolo, questi compatti forni ad alta temperatura presentano numerosi vantaggi. L'eccellente lavorazione di materiali pregiati, abbinata alla facilità d'uso che li contraddistingue, sta alla base dell'eccezionale versatilità di questi modelli per quanto riguarda la ricerca e le prove in laboratorio. Questi forni ad alta temperatura sono ideali anche per la sinterizzazione della ceramica tecnica, ad esempio per ponti in ossido di zirconio.

Forno ad alta temperatura LHT 01/17 D

Versione standard

- Tmax 1600 °C, 1750 °C o 1800 °C
- Temperatura di lavoro 1750 °C (per i modelli LHT ../18); temperature di lavoro più elevate possono portare a una maggiore usura
- Elementi riscaldanti pregiati in disiliciuro di molibdeno
- Apertura di presa aria regolabile, apertura per scarico aria nella parte superiore
- Termocoppie di tipo B
- Controller P570 (50 programmi da 40 segmenti ciascuno), per la descrizione della regolazione vedi pagina 76

Dotazione aggiuntiva

- Limitatore di sovra temperatura con temperatura di spegnimento regolabile su una temperatura limite per proteggere il forno e la carica
- Allacciamento gas inerte per il lavaggio del forno con gas inerti o di reazione non infiammabili, non a tenuta di gas
- Sistema di gasaggio manuale o automatico

Modello	Tmax	Dimen	sioni interne	in mm	Volume	Volume Dimensioni esterne ¹ in mm			Potenza allacciata	Allacciamento	Peso	Tempo di riscaldamento
	in °C	largh.	prof.	h	in I	LARGH.	PROF.	H ²	in kW	elettrico*	in kg	in min ³
LHT 02/16	1600	90	150	150	2	470	630	760+260	3,0	monofase	75	30
LHT 04/16	1600	150	150	150	4	470	630	760+260	5,2	trifase⁴	85	25
LHT 08/16	1600	150	300	150	8	470	810	760+260	8,0	trifase⁴	100	25
LHT 01/17 D	1650	110	120	120	1	385	425	525+195	2,9	monofase	28	35
LHT 03/17 D	1650	135	155	200	4	470	630	770+260	3,0	monofase	75	30
LHT 02/17	1750	90	150	150	2	470	630	760+260	3,0	monofase	75	35
LHT 04/17	1750	150	150	150	4	470	630	760+260	5,2	trifase⁴	85	30
LHT 08/17	1750	150	300	150	8	470	810	760+260	8,0	trifase⁴	100	30
LHT 02/18	1800	90	150	150	2	470	630	760+260	3,6	monofase	75	60
LHT 04/18	1800	150	150	150	4	470	630	760+260	5,2	trifase4	85	40
LHT 08/18	1800	150	300	150	8	470	810	760+260	9,0	trifase4	100	40

¹Le dimensioni esterne variano in caso di dotazione aggiuntiva. Dimensioni su richiesta.

*Per le indicazioni sulla tensione di alimentazione vedi pagina 80 4Riscaldamento solo tra due fasi

Forno ad alta temperatura LHT 01/17 D

Contenitori carica con coperchio

Esempio di selettore-limitatore della temperatura

²Include porta ad apertura parallela aperta

Tempo di riscaldamento approssimativo del forno vuoto e chiuso fino a Tmax –100 K collegato a 230 V 1/N/PE rsp. 400 V 3/N/PE

Forni ad alta temperatura con riscaldamento in disiliciuro di molibdeno e isolamento in fibra fino a 1800 °C

Grazie alla solida struttura questi forni ad alta temperatura sono indicati per soddisfare le esigenze quotidiane sia in laboratorio che in produzione. I modelli standard compatti sono particolarmente adatti per la produzione di ceramiche tecniche come la bio ceramica o la sinterizzazione di componenti CIM dove sono necessarie elevate temperature di lavoro e sono richiesti elevati standard qualitativi. L'ottima uniformità della temperatura e lo studio attento dei particolari creano un livello qualitativo insuperabile e rappresentano la soluzione ideale per molte applicazioni. Per adattarsi al processo, i forni possono essere dotati di numerosi accessori opzionali dalla nostra vasta gamma.

Forno ad alta temperatura HT 29/17

Forno a camera ad alta temperatura HT 450/16 con due dispositivi di chiusura per porta

Versione standard

- Tmax 1600 °C, 1750 °C oppure 1800 °C
- Temperatura di lavoro massima consigliata ca. 50 °C sotto la Tmax del forno.
 Temperature di lavoro più elevate possono portare a un'usura maggiore.
- Riscaldamento da entrambi i lati mediante elementi riscaldanti in disiliciuro di molibdeno
- Ottimo isolamento in fibra con speciale isolamento posteriore
- Isolamento resistente del soffitto con speciale sospensione
- Uniformità della temperatura secondo DIN 17052-1 a 1450 °C fino a +/- 6 °C vedi pagina 72
- Porta ad apertura parallela con guida a catena per apertura e chiusura precise della porta
- Versione a due porte (fronte/retro) per forni ad alta temperatura a partire da HT 276/...
- Tenuta a labirinto per la minor perdita possibile di temperatura nella zona della porta
- Fondo rinforzato a protezione dell' isolamento della base di serie a partire dal modello HT 16/16 (carico distribuito 5 kg/dm²)
- Apertura di scarico aria sul tetto del forno con valvola di scarico aria motorizzata, controllata dalla funzione extra del controller
- Cappa di scarico in acciaio inox come interfaccia per il sistema di scarico fumi presso il cliente
- Limitatore di sovra temperatura con temperatura di spegnimento regolabile su una temperatura limite per proteggere il forno e la carica
- Controller P570 con operatività touch (50 programmi da 40 segmenti ciascuno), per la descrizione della regolazione vedi pagina 80

Dotazione aggiuntiva

- Sistema di raffreddamento per raffreddare il forno con un gradiente di temperatura definito o con un volume di aria fresca preimpostato. Entrambe le modalità operative possono essere attivate e disattivate per segmenti diversi mediante la funzione extra del controller.
- Passaggio per termocoppia con chiusura a vite
- Termocoppia per controllo della temperatura con certificato di taratura
- Collegamento del gas inerte per il lavaggio con gas di processo non infiammabili (non completamente a tenuta di gas)
- Sistema di gasaggio automatico con valvola elettromagnetica e flussometro a galleggiante, attivato tramite funzione extra del controller
- Isolamento del fondo in mattoni refrattari per un carico più elevato (Tmax 1700 °C)
- Porta ad apertura parallela
- Blocco porta automatico incl. interruttore contatto porta
- Dispositivo di protezione da danni meccanici per elementi riscaldanti
- Elevata qualità degli elementi riscaldanti, ad es. per applicazioni con ossido di zirconio
- Interfaccia Ethernet

Forno ad alta temperatura HT 160/17 con sistema di gasaggio

Forno ad alta temperatura HT 64/17 con controlli PLC e opzioni aggiuntive

							00				
Modello	Tmax	Dimensioni interne in mm			Volume	Dimen	sioni esterne	in mm	Potenza	Allacciamento	Peso
	°C	largh.	prof.	h	in I	LARGH.	PROF.	Н	allacciata in kW	elettrico*	in kg
HT 08/16	1600	150	300	150	8	740	640	1755	8,5	trifase ²	215
HT 16/16	1600	200	300	260	16	820	690	1860	12,5	trifase ²	300
HT 29/16	1600	275	300	350	29	985	740	1990	9,8	trifase ²	350
HT 40/16	1600	300	350	350	40	1010	800	1990	12,5	trifase	420
HT 64/16	1600	400	400	400	64	1140	890	2040	18,5	trifase	555
HT 128/16	1600	400	800	400	128	1140	1280	2040	26,5	trifase	820
HT 160/16	1600	500	550	550	160	1250	1040	2260	21,5	trifase	760
HT 276/16	1600	500	1000	550	276	1340	1600	2290	43,5	trifase	1270
HT 450/16	1600	500	1150	780	450	1380	1820	2570	65,0	trifase	1570
HT 08/17	1750	150	300	150	8	740	640	1755	8,5	trifase ²	215
HT 16/17	1750	200	300	260	16	820	690	1860	12,5	trifase ²	300
HT 29/17	1750	275	300	350	29	985	740	1990	9,8	trifase ²	350
HT 40/17	1750	300	350	350	40	1010	800	1990	12,5	trifase	420
HT 64/17	1750	400	400	400	64	1140	890	2040	18,5	trifase	555
HT 128/17	1750	400	800	400	128	1140	1280	2040	26,5	trifase	820
HT 160/17	1750	500	550	550	160	1250	1040	2260	21,5	trifase	760
HT 276/17	1750	500	1000	550	276	1340	1600	2290	43,5	trifase	1270
HT 450/17	1750	500	1150	780	450	1380	1820	2570	65,0	trifase	1570
HT 08/18	1800	150	300	150	8	740	640	1755	8,5	trifase ²	215
HT 16/18	1800	200	300	260	16	820	690	1860	12,5	trifase ²	300
HT 29/18	1800	275	300	350	29	985	740	1990	9,8	trifase2	350
HT 40/18	1800	300	350	350	40	1010	800	1990	12,5	trifase	420
HT 64/18	1800	400	400	400	64	1140	890	2040	18,5	trifase	555
HT 128/18	1800	400	800	400	128	1140	1280	2040	26,5	trifase	820
HT 160/18	1800	500	550	550	160	1250	1040	2260	21,5	trifase	760
HT 276/18	1800	500	1000	550	276	1340	1600	2290	43,5	trifase	1270
HT 450/18	1800	500	1150	780	450	1380	1820	2570	65,0	trifase	1570

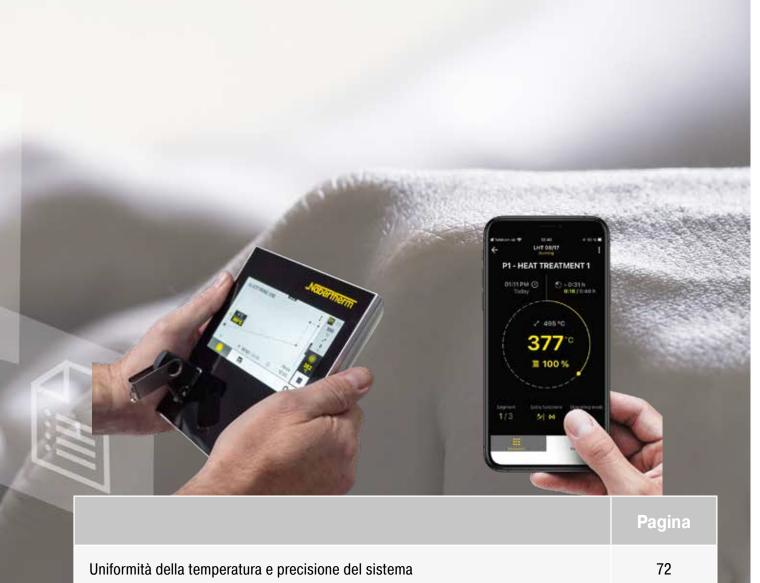
HT 450/18 1800 500 1150 780

'Le dimensioni esterne variano in caso di dotazione aggiuntiva. Dimensioni su richiesta.

70 65,0 trifase 1570
*Per le indicazioni sulla tensione di alimentazione vedi pagina 80

Sistema di gasaggio automatico con valvola elettromagnetica e flussometro a galleggiante

Tipo a due porte per forni ad alta temperatura a partire da HT 276/..


Forno ad alta temperatura HT 160/18 DB200-3 con porta ad apertura parallela

²Riscaldamento solo tra due fasi

Controllo dei processi e documentazione

	Pagina
Uniformità della temperatura e precisione del sistema	72
AMS2750F, NADCAP, CQI-9	73
Nabertherm controller serie 500	76
MyNabertherm app	78
Funzioni dei controller standard	80
Memorizzazione dei dati di processo e immissione dei dati tramite PC	81
PLC Controls	83
Archiviazione dei dati di processo	84
Nabertherm Control-Center - NCC	85

Uniformità della temperatura e precisione del sistema

Viene detta uniformità della temperatura una determinata deviazione massima della temperatura presente nello spazio utile del forno. Di principio viene fatta distinzione tra la camera del forno e lo spazio utile del forno. La camera è il volume totale disponibile all'interno del forno. Lo spazio utile è più piccolo della camera ed è il volume utilizzabile per il caricamento.

Supporto di misurazione per la determinazione dell'uniformità della temperatura

Indicazione dell'uniformità della temperatura in +/- K in un forno standard

Nell'esecuzione standard l'indicazione dell'uniformità della temperatura in +/- K di una temperatura di lavoro nominale definita nello spazio utile nel forno vuoto durante la sosta. Se deve essere eseguita una misurazione comparativa per l'uniformità della temperatura, il forno deve essere opportunamente calibrato. Nell'esecuzione standard, i forni non vengono calibrati prima della consegna.

Calibratura dell'uniformità della temperatura in +/- K

Se è richiesta un'uniformità assoluta della temperatura a una determinata temperatura nominale o in un determinato intervallo di temperatura, è necessario calibrare il forno. Se, ad esempio, è richiesta un'uniformità della temperatura di +/- 5 K a una temperatura di 750 °C, significa che nello spazio utile vuoto può essere misurata una temperatura minima di 745 °C e massima di 755 °C.

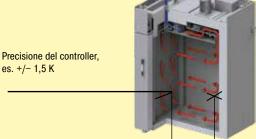

Precisione del sistema

Sono presenti varie tolleranze non solo nello spazio utile (vedi sopra), ma anche sulla termocoppia e sul controller. Se è quindi richiesta una precisione assoluta di temperatura in +/- K a una temperatura nominale definita o all'interno di un intervallo di temperature definito,

- Si misura la differenza di temperatura del tratto che va dal controller alla termocoppia
- Si misura l'uniformità della temperatura presente nello spazio utile a questa temperatura o nell'intervallo di temperatura definito
- All'occorrenza si imposta un valore di compensazione nel controller per allineare la temperatura visualizzata sul controller alla temperatura effettiva presente nel forno
- Si stende un verbale per documentare i risultati della misurazione

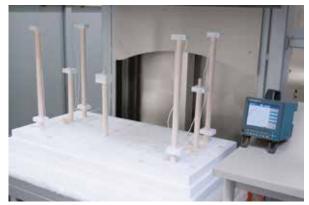
Uniformità della temperatura nello spazio utile con verbale

Nel forno standard è garantita un'uniformità della temperatura in +/- K senza la misurazione dell'uniformita' della temperatura . Come dotazione aggiuntiva è tuttavia possibile ordinare la misurazione dell'uniformità della temperatura a una temperatura target definita nello spazio utile secondo DIN 17052-1. In base al modello del forno, nel forno si allestisce un telaio corrispondente alle dimensioni dello spazio utile. Delle termocoppie vengono fissate in questo telaio, fino a undici posizioni di misurazione definite. La misurazione dell'uniformità ella temperatura viene eseguita a una temperatura nominale definita dal cliente, dopo il raggiungimento di una condizione statica. Se richiesto, è possibile calibrare anche temperature nominali diverse o un determinato intervallo di temperatura.



Telaio da assemblare per la misurazione nel forno a circolazione d'aria N 7920/45 HAS

La precisione del sistema si ottiene sommando le tolleranze del controller, della termocoppia e dello spazio utile


Uniformità della temperatura spazio utile es. +/- 1 K

Differenza tra il punto di misurazione e la temperatura media nello spaio utile della camera es. +/-3 K

AMS2750F, NADCAP, CQI-9

AMS2750F (Aerospace Material Specifications) è uno standard per la lavorazione di materiali di alta qualità nell'industria. Queste norme descrivono i requisiti relativi al trattamento termico. La norma AMS2750F e le norme derivate come la AMS2770 per il trattamento termico dell'alluminio costituiscono oggi lo standard di riferimento per l'industria aeronautica e spaziale. Con l'introduzione della CQI-9 anche l'industria automobilistica si impegna oggi a sottoporre i processi di trattamento termico a regole più severe. Queste norme descrivono in dettaglio i requisiti relativi agli impianti per processi termici:

Struttura di misurazione in un forno ad alta temperatura

- Uniformità della temperatura nel vano utile (TUS)
- Strumentazione (prescrizioni su dispositivi di misurazione e di regolazione)
- Calibratura della linea di misura (IT) dal regolatore attraverso il cavo di misura fino alla termocoppia
- Verifiche della precisione del sistema (SAT)
- Documentazione dei cicli di verifica

Il rispetto delle normative è necessario per poter garantire il rispetto dello standard di qualità richiesto per i componenti da realizzare anche nella fase di produzione di serie. Per questo motivo vengono richieste verifiche ampie e ripetute, oltre a controlli della strumentazione inclusa la relativa documentazione.

Prescrizioni di AMS2750F per la classe di forno e la strumentazione

A seconda dei requisiti di qualità per il componente da sottoporre a trattamento termico, il cliente fornisce indicazioni sul tipo di strumentazione e sulla classe di uniformità della temperatura. Il tipo di strumentazione descrive la necessaria composizione del sistema di regolazione utilizzato, degli strumenti di registrazione e delle termocoppie. L'uniformità della temperatura del forno e la qualità della strumentazione impiegata dipende dalla classe di forno richiesta. Quanto maggiori sono i requisiti per quanto concerne la classe del forno, tanto più precisa deve essere realizzata la strumentazione.

Verifiche regolari

Il forno e l'impianto di trattamento termico devono essere realizzati in modo che vengono soddisfatti ogni volta i requisiti di AMS2750F in modo riproducibile. La norma prescrive inoltre gli intervalli di verifica per la strumentazione (SAT = System Accuracy Test) e l'uniformità della temperatura del forno (TUS = Temperature Uniformity Survey). Le verifiche SAT/TUS devono essere eseguite con strumenti di misura e sensori che funzionano indipendentemente dalla strumentazione del forno.

Strumentazione	Tipi Classe di forno Unif							Uniformità del	Uniformità della temperatura		
	Α	В	С	D+	D	Ε		°C	°F		
Per ogni zona di regolazione una termocoppia collegata con il controller	Х	X	Х	Χ	Х	х	1	+/- 3	+/- 5		
Registrazione della temperatura misurata sulla termocoppia di regolazione	Х	Х	Χ	Х	Х		2	+/- 6	+/- 10		
Sensori per la registrazione dei punti più freddi e più caldi	Х		Χ				3	+/- 8	+/- 15		
Per ogni zona di regolazione una termocoppia di carica con registrazione	Х	Х					4	+/- 10	+/- 20		
Un sensore di registrazione aggiuntivo, distanza < 76 mm dal sensore di controllo, sensore di un tipo differente				Х			5	+/- 14	+/- 25		
Per ogni zona di regolazione una protezione da sovratemperatura	Х	Χ	Х	Χ	Х		6	+/- 28	+/- 50		

Struttura di misurazione in un forno di ricottura

Protocollo di misurazione

Calibrazione del campo di misura

AMS2750F, NADCAP, CQI-9

Con i dati relativi al processo, alla carica, alla classe di forno necessaria e al tipo di strumentazione è possibile progettare il modello di forno indicato per il trattamento termico che si desidera effettuare. A seconda dei requisiti tecnici si possono offrire diverse soluzioni:

N 12012/26 HAS1 secondo AMS2750F

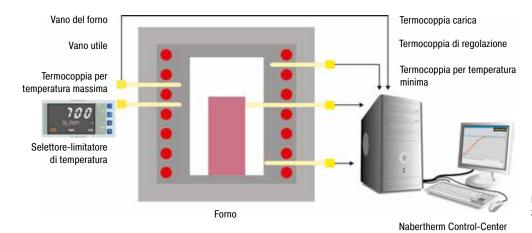
- Concezione del forno a norma secondo le indicazioni del cliente per classe di forno e strumentazione, compresi bocchettoni di misura per verifiche ripetitive regolari a cura del cliente. Nessuna considerazione dei requisiti per quanto riguarda la documentazione
- Registrazioni dei dati (es. termografi) per misurazioni TUS e/o SAT vedi pagina 84
- Registrazione dei dati, visualizzazione, gestione tempi tramite il Nabertherm Control Center (NCC), basato sul software Siemens WinCC, vedi pagina 85
- Messa in funzione in loco presso il cliente, compresa prima verifica TUS e SAT
- Collegamento degli impianti di forno esistenti secondo i requisiti previsti dalle norme
- Documentazione delle catene di processo complete secondo i requisiti previsti dalla norma corrispondente

Realizzazione della AMS2750

In linea di principio, per la regolazione e la documentazione vengono forniti due sistemi diversi: una consolidata soluzione di sistema Nabertherm oppure una strumentazione con regolatori/termografi Eurotherm.II pacchetto AMS di Nabertherm rappresenta una comoda soluzione con il Control Center Nabertherm per la gestione, visualizzazione e documentazione di processi e requisiti di verifica sulla base di un sistema di regolazione PLC.

Strumentazione con Nabertherm Control-Center (NCC)

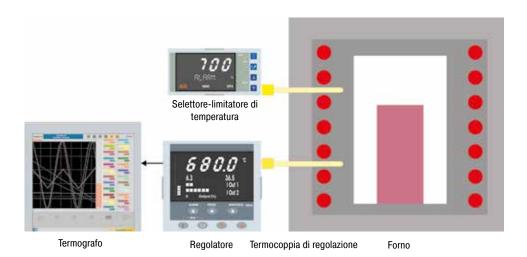
La strumentazione con Nabertherm Control-Center in connessione con una regolazione PLC del forno convince per la sua chiarezza per quanto concerne immissione dei dati e visualizzazione. La programmazione del software è strutturata in modo che sia l'utente, sia il revisore vi possano lavorare con facilità.



Le seguenti caratteristiche del prodotto risultano convincenti nel loro impiego quotidiano:

- Rappresentazione molto chiara e semplice di tutti i dati in testo chiaro sul PC
- Memorizzazione automatica della documentazione della carica dopo la fine del programma
- Gestione dei cicli di calibrazione nel NCC
- Inserimento dei risultati della calibrazione dei percorsi di misurazione nel NCC
- Gestione delle scadenze dei cicli di verifica necessari con funzione di promemoria. I cicli di verifica per TUS (Temperature Uniformity Survey) e SAT (System Accuracy Test) sono inseriti in giorni e monitorati dal sistema; l'utente o l'addetto alla verifica viene tempestivamente informato sulle verifiche imminenti.
- Possibilità di trasmettere i dati misurati ad un server del cliente

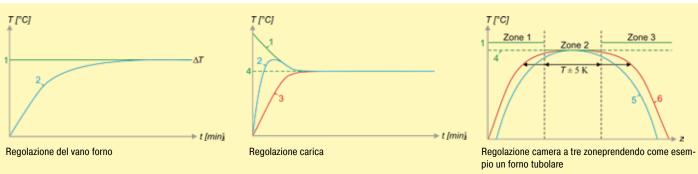
Il Nabertherm Control-Center può essere ampliato in modo da rendere possibile una costante documentazione di tutto il processo di trattamento termico anche al di fuori del forno. In questo modo, per esempio nel trattamento termico dell'alluminio, oltre ai forni possono essere documentate anche le temperature nei bacini di raffreddamento o in un mezzo di raffreddamento separato.



Esempio di un'esecuzione con strumentazione Nabertherm Control-Center di tipo A

Strumentazione alternativa con regolatori di temperatura e termografo di Eurotherm

In alternativa alla strumentazione mediante regolazione PLC e Nabertherm Control-Center (NCC) può essere offerta una strumentazione con regolatori e termografi. Il termografo dispone di una funzione di protocollo che può essere configurata manualmente. I dati possono essere trasferiti su un pennino USB e analizzati, formattati e stampati su un PC a parte. Altro al termografo integrato nella strumentazione standard è necessario un dispositivo a parte per le misurazioni TUS (vedi pagina 84).

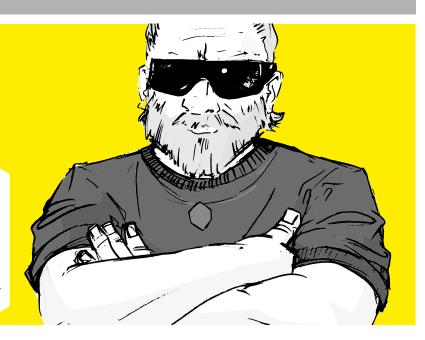

Esempio dell'esecuzione con strumentazione Eurotherm in base a tipo D

Regolazione del vano forno

Solo la temperatura del vano del forno viene misurata e regolata. Per evitare sollecitazioni eccessive, la regolazione avviene lentamente. Dal momento che la temperatura della carica non viene qui misurata e regolata, questa si discosta di alcuni gradi dalla temperatura del vano del forno.

Regolazione carica

Con la regolazione carica attivata viene regolata sia la temperatura della carica sia la temperatura della camera. Con l'ausilio di vari parametri i processi di riscaldamento e raffreddamento possono essere adattati alle specifiche esigenze, ottenendo una regolazione termica molto più precisa sulla carica.



- 1. Setpoint camera del forno 2. Valore effettivo camera del forno 3. Valore effettivo carica 4. Setpoint carica -
- 5. Valore effettivo camera 1 zona 6. Valore effettivo camera 3 zone

Nabertherm controller serie 500

I AM THE CONTROLLER

Sono il fratello maggiore dei pulsanti analogici e dei selettori rotativi. Sono la nuova generazione di controllo e funzionamento intuitivo. Le mie competenze sono molto complesse, la mia operatività è semplice. Posso essere toccato e parlo 24 lingue. Ti mostrerò esattamente quale programma è attualmente in esecuzione e quando termina.

Il controller della serie 500 colpisce per le sue prestazioni uniche e il funzionamento intuitivo. In combinazione con l'app gratuita per smartphone "Mynabertherm", l'operatività e il monitoraggio del forno sono ancora più semplici e potenti che mai. Il funzionamento e la programmazione avvengono tramite un ampio pannello touch ad alto contrasto, che mostra esattamente le informazioni rilevanti al momento.

B510, C550, P580

B500, C540, P570

Versione standard

- Trasparente visualizzazione grafica delle curve di temperatura
- Presentazione chiara dei dati di processo
- 24 lingue di funzionamento selezionabili
- Design coerente e accattivante
- Simboli facilmente comprensibili per molteplici funzioni
- Controllo preciso e accurato della temperatura
- Livelli utente
- Visualizzazione dello stato del programma con data e ora di fine stimate
- Documentazione delle curve di processo su supporto USB in formato file .csv
- Le informazioni per il service possono essere lette tramite chiavetta USB
- Presentazione chiara
- Display con testo in chiaro
- Configurabile per tutte le famiglie di forni
- Può essere parametrizzato per i diversi processi

In avidanza

Oltre alle collaudate funzioni del controller, la nuova generazione offre alcuni punti salienti individuali. Ecco una panoramica dei più importanti per te:

Design moderno

Visualizzazione a colori delle curve di temperatura e dei dati di processo

Facile programmazione

Inserimento programma semplice ed intuitivo tramite pannello touch

Funzione di aiuto integrata

Informazioni su vari comandi in testo normale

Gestione del programma

I programmi di temperatura possono essere salvati come preferiti e categorizzati

Visualizzazione in segmenti

Panoramica dettagliata delle informazioni di processo, inclusi setpoint, valore effettivo e funzioni commutate

Compatibile con Wi-F

Collegamento con l'app MyNabertherm

Touch screen intuitivo

inserimento facile del programma e controllo

Controllo preciso della temperatura

Livelli utente

Documentazione di processo su USB

Ulteriori informazioni sui controller Nabertherm, documentazione di processo e tutorial sul funzionamento sono disponibili sul nostro sito web: https://nabertherm.com/it/serie-500

App MyNabertherm su smartphone per il monitoraggio dell'avanzamento dei processi

MyNabertherm app: l'accessorio digitale potente e gratuito per i controller Nabertherm serie 500. Usa l'app per monitorare comodamente online lo stato dei tuoi forni Nabertherm, dal tuo ufficio, mentre sei in viaggio o da dove desideri. L'app ti tiene sempre sotto controllo. L'app ti tiene sempre sotto controllo. Proprio come il controller stesso, anche l'app è disponibile in 24 lingue.

Comodo monitoraggio simultaneo di uno o più forni Nabertherm

Visualizzazione dell'avanzamento del programma

Funzioni dell'app

- Comodo monitoraggio simultaneo di uno o più forni Nabertherm
- Presentazione chiara come dashboard
- Panoramica individuale di un forno
- Visualizzazione dei forni attivi/inattivi
- Stato operativo
- Dati di processo attuali

Visualizzazione dell'avanzamento del programma per ogni forno

- Rappresentazione grafica dello stato di avanzamento del programma
- Visualizzazione del modello del forno, nome del programma, informazioni sul
- Visualizzazione dell'ora di inizio, tempo di esecuzione del programma, tempo di esecuzione rimanente
- Visualizzazione di funzioni aggiuntive come ventola dell'aria fresca, flap dell'aria di scarico, gasaggio, ecc.
- Modalità operative con simbolo

- Notifica push sulla schermata di blocco
- Visualizzazione di malfunzionamenti con relativa descrizione nella panoramica individuale e in un elenco di messaggi

Facile da contattare

I dati memorizzati del forno facilitano un rapido supporto

Requisiti

- Collegamento del forno a Internet tramite la Wi-Fi del cliente
- Per dispositivi mobili con Android (dalla versione 9) o IOS (dalla versione 13)

Monitoraggio di forni Nabertherm con controller touch panel serie 500 per applicazioni artistiche e artigianali, di laboratorio, odontoiatriche, processi termici, materiali avanzati e fonderia.

Disponibile in 24 lingue

Chiaro menu contestuale

Notifiche push in caso di malfunzionamenti

Qualsiasi aggiunta ai forni Nabertherm

Tutto visualizzabile nella nuova app Nabertherm per il nuovo controller serie 500. Ottieni il massimo dal tuo forno con la nostra app per iOS e Android. Non esitare a scaricarla ora.

Funzioni dei controller standard

	R7	3216	3208	B500/ B510	C540/ C550	P570/ P580	3508	3504	H500	H1700	H3700	NCC
Numero di programmi	1	1		5	10	50		1/10/ 25/50 ³	20	20	20	100
Segmenti	1	8		4	20	40	500 ³	500 ³	20	20	20	20
Funzioni extra (ad esempio ventola o portelli automatici) massimo				2	2	2-6	0-43	2-83	33	6/23	8/23	16/4 ³
Numero massimo di zone regolabili	1	1	1	1	1	3	21,2	21,2	1-3 ³	8	8	8
Comando regolazione a zone manuale				•	•	•						
Regolazione carica/regolazione del bagno di fusione						•	0	0	0	0	0	0
Autoottimizzazione		•	•	•	•	•	•	•				
Orologio in tempo reale				•	•	•			•	•	•	•
Display grafico a colori				•	•	•			4" 7"	7"	12"	22"
Visualizzazione grafica delle curve di temperatura (svolgimento del programma)				•	•	•						
Messaggi di stato con visualizzazione del testo in chiaro			•	•	•	•	•	•	•	•	•	•
Immissione dei dati tramite touch panel				•	•	•			•	•	•	
Programmi inseribili con nome (es Sinterizzazione)				•	•	•				•	•	•
Blocco tasti				•	•	•	0	0				
Livelli utente				•	•	•	•	•	0	0	0	•
Funzione skip per cambio segmento				•	•	•			•	•	•	•
Immissione dei programmi con incrementi di 1 °C e/o 1 min.	•	•	•	•	•	•	•	•	•	•	•	•
Orario di avvio programmabile (es. per usufruire delle tariffe notturne)				•	•	•			•	•	•	•
Commutazione °C/°F	0	0	0	•	•	•	0	0	•	●3	●3	●3
Contatore KWh				•	•	•						
Contaore di esercizio				•	•	•			•	•	•	•
Uscita set point			0	•	•	•	0	0		0	0	0
NTLog Comfort per HiProSystem: la registrazione dei dati di processo su un supporto di memoria esterno									0	0	0	
NTLog Basic per controller Nabertherm: registrazione dei dati di processo con USB flash drive				•	•	•						
Interfaccia per software VCD				0	0	0	0	0				
Memoria errori				•	•	•			•	•	•	•
Numero di lingue selezionabili				24	24	24						
Compatibile con Wi-Fi (App MyNabertherm)				•	•	•						
Non come regulatore del bagno di fusione												Standard

¹ Non come regolatore del bagno di fusione

Standard O Opzione

Associazione dei controller standard alle famiglie di forni	NR(A) 20/06 - NR(A) 1000/11	NR, NRA H ₂	NR, NRA IDB	NR, NRA 40/02 CDB	NR, NRA 150/02 CDB	VHT	VHT H ₂	NA 120/45 - NA 675/85	NAT	TR	KTR	LH 15/12 - LF 120/14	MM	H/L N 87/H	N 81(/) - N 641(/)	L/11 BO		H
Pagina del catalogo	18	20	20	22	22	24	28	32	38	40	42	46	50	52	52	66	67	68
Controller																		
C6/3208								0			0				0			
3504	0							0		0	0				0			
R 7										•								
B500								•	•		•	•	•	•	•			
B510									•	0								
C540								0			0	0	0	0	0			
C550									0	0						•		
P570	•					●3		0			0	0	0	0	0		•	●3
P580									0	0						0		
H500/PLC								0				0			0			●3
H700/PLC						●3												0
H1700/PLC			•	•				0			0				0			0
H3700/PLC	0	•			•	0	•	0			0				0			0
NCC	0	0	0	0	0	0	0	0			0	0			0			0

Tensioni di alimentazione dei forni Nabertherm

Monofase: tutti i forni sono disponibili per tensioni di alimentazione di 110 V - 240 V, 50 o 60 Hz.

Trifase: tutti i forni sono disponibili per tensioni di alimentazione di 200 V - 240 V, 380 V - 480 V, 50 o 60 Hz.

Le classi di collegamento elettrico nel catalogo si riferiscono al forno standard 400 V (3/N/PE), rispettivamente 230 V (1/N/PE).

² Possibilità di comandare ulteriori regolatori zonali separati ³ A seconda del modello

Memorizzazione dei dati di processo e immissione dei dati tramite PC

Sono disponibili varie opzioni per la valutazione e l'immissione dei dati nei processi per una documentazione di processo ottimale e per l'archiviazione dei dati. Le seguenti opzioni sono adatte per la memorizzazione dei dati quando si utilizzano i controller standard.

Memorizzazione dati dai Controllers Nabertherm con NTLog Basic

NT Log Basic consente la registrazione dei dati di processo dal controller Nabertherm collegato (B500, B510, C540, C550, P570, P580) su una chiavetta USB. Per la documentazione di processo con NTLog Basic non servono ulteriori termocoppie o sensori. Vengono registrati solo i dati che sono a disposizione nel controller. I dati memorizzati sulla penna USB (fino a 130.000 record di dati, formato CSV) possono infine essere analizzati al PC utilizzando NTGraph oppure un programma di calcolo elettronico del cliente (es. Excel™ per MS Windows™). Per impedire modifiche involontarie dei dati, per i record di dati generati ci saranno dei checksum.

Visualizzazione con NTGraph per MS Windows™ per forni controllati a singola zona

I dati di processo di NTLog possono essere visualizzati utilizzando il programma di fogli di calcolo del cliente (ad es. Excel™ per MS Windows™) o NTGraph per MS Windows™ (gratuito). Con NTGraph (gratuito) Nabertherm mette a disposizione gratuitamente uno strumento aggiuntivo di facile utilizzo per la visualizzazione dei dati generati da NTLog. Prerequisito per il suo utilizzo è l'installazione del programma Excel™ per MS Windows™ (dalla versione 2003). Dopo l'importazione dei dati è possibile scegliere la presentazione come diagramma, tabella o rapporto. Il design (colore, scala, etichette di riferimento) può essere adattato utilizzando set preparati. NTGraph è disponibile in otto lingue (DE/EN/FR/ES/IT/CN/RU/PT). Inoltre, i testi selezionati possono essere generati in altre lingue.

Software NTEdit per MS Windows™ per l'inserimento di programmi sul PC

Utilizzando il software NTEdit per MS Windows™ (gratuito) l'input dei programmi diventa più chiaro e quindi più comodo. Il programma può essere inserito sul PC del cliente e poi importato nel controllore (B500, B510, C540, C550, P570, P580) con una chiavetta USB. La visualizzazione della curva impostata è tabellare o grafica. È anche possibile l'importazione del programma in NTEdit. Con NTEdit Nabertherm fornisce uno strumento gratuito di facile utilizzo. Un prerequisito per l'utilizzo è l'installazione da parte del cliente di Excel™ per MS Windows™ (dalla versione 2007). NTEdit è disponibile in otto lingue (DE/EN/FR/ES/IT/CN/RU/PT).

NTGraph, freeware per l'analisi chiara e comprensibile dei dati registrati tramite Excel™ per MS Windows™

Registrazione dei dati di processo del controller collegato tramite chiavetta USB

1.600			-	0+19	-	(Title)			- 01	pen ruene	777
100/9450 0 w/st.16	10	M	1 TO	1	- 54		_				3.9
			1					F.A			114
lastry					-	1	Area To		distant.	No.	Ingress *
r.	Ħ	F	16	×	W	*	000		1.86	-	
- 6	ie.	-	38	8					(00):		- 1
1 (6)	E	1	æ	F				10079	200		-
(6)	h		16	10		. 9					
63	98	7	8	F	-	1					
- FS	æ	7	10	6	5	P					
r Pa	ĸ	5	98	P	7	381					
1 20	Œ.	7	28	æ.	9	580					

Input di processo tramite il software NTEdit (freeware) per MS Windows™

Memorizzazione dati standard Software VCD per la visualizzazione, il comando e la documentazione

Documentazione e riproducibilità sono sempre più importanti per la garanzia della qualità. Il potente software VCD rappresenta una soluzione ottimale per la gestione di forni singoli o multipli e la documentazione delle cariche in base ai controller Nabertherm.

Il software VCD viene utilizzato per registrare i dati di processo della serie 500 e della serie 400 e di vari altri regolatori Nabertherm. È possibile memorizzare fino a 400 diversi programmi di trattamento termico. I controller vengono avviati e arrestati tramite il software su un PC. Il processo è documentato e archiviato di conseguenza. La visualizzazione dei dati può essere eseguita in un diagramma o come tabella di dati. È possibile anche il trasferimento dei dati di processo in Excel™ per MS Windows™ (formato .csv *) o la generazione di report in formato PDF.

Esempio di configurazione con 3 forni

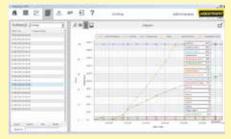
Caratteristiche

- Disponibile per controller serie 500 B500/B510/C540/C550/P570/P580, serie 400 B400/B410/C440/C450/P470/P480,
 Eurotherm 3504 e vari altri controller Nabertherm
- Adatto per sistemi operativi Microsoft Windows 7/8/10/11
- Semplicità di installazione
- Programmazione, archiviazione e stampa di programmi e grafici
- Comando del controller dal PC
- Archiviazione dell'andamento delle temperature fino a un massimo di 16 forni (anche multizona)
- Memoria ridondante dei file archiviati su un'unità server
- Niveau de sécurité accru grâce au stockage de données binaire
- Libero inserimento dei dati delle cariche con comoda funzione di ricerca
- Possibilità di analisi, esportazione dei dati in Excel™ per MS Windows™
- Creazione di un report in formato PDF
- 24 lingue selezionabili

Pacchetto di espansione I per la visualizzazione di un ulteriore punto di misura della temperatura, a prescindere dai comandi

- Collegamento di una termocoppia indipendente, tipo S, N o K con visualizzazione della temperatura su un display C6D in dotazione, ad es. per la documentazione della temperatura di carica
- Conversione e trasmissione dei valori di misura al software VCD
- Per l'analisi dei dati vedi le caratteristiche del software VCD
- Visualizzazione della temperatura misurata direttamente sul pacchetto di espansione

Pacchetto di espansione II per l'allacciamento di tre, sei o nove punti di misurazione della temperatura, a prescindere dai comandi


- Allacciamento di tre termocoppie tipo K, S, N .. o B alla scatola di connessione fornita
- Possibilità di espansione a due o tre scatole di connessione per un massimo di nove punti di misura della temperatura
- Conversione e trasmissione dei valori di misura al software VCD
- Per l'analisi dei dati vedi le caratteristiche del software VCD

Software VCD per gestione, visualizzazione e documentazione

Rappresentazione grafica del quadro d'insieme (versione con 4 forni)

Rappresentazione grafica del diagramma di processo

PLC Controls HiProSystems

Questo controllo di processo professionale con PLC controlla sia forni a singola che multi-zona e si basa su hardware Siemens che può essere adattato e aggiornato ampiamente. HiProSystems viene utilizzato quando sono richieste funzioni, come flap di scarico d'aria, ventole di raffreddamento, movimenti automatici, ecc, che devono essere trattati nel corso di un ciclo, quando i forni con più di una zona devono essere controllati, quando è necessaria una speciale documentazione per ogni lotto e quando è richiesto il servizio in remoto. È flessibile e può essere facilmente adattata alle vostre esigenze di processo o di documentazione.

Interfacce utente alternative per HiProSystem

Controllo dei processi H500

La versione standard copre già la maggior parte delle applicazioni, offrendo facilità di uso e monitoraggio. Il programma per temperatura/tempo e le funzioni supplementari disponibili sono rappresentati in forma tabellare di facile comprensione, i messaggi sono visualizzati come testo chiaro. I dati possono essere memorizzati su una chiavetta USB usando l'opzione "NTLog Comfort".

Controllo dei processi H1700

Versioni personalizzate possono essere realizzate in aggiunta alla portata dei servizi dell'H500. Visualizzazione dei dati di base come trend online su un display a colori da 7" con interfaccia graficamente strutturata.

Controllo dei processi H3700

Visualizzazione delle funzioni su un grande display 12" Visualizzazione dei dati di base come orientamento in linea o come una panoramica del sistema grafico. Ambito di applicazione come H1700.

Router di manutenzione remota: supporto rapido in caso di malfunzionamento

Per una rapida diagnosi dei guasti in caso di malfunzionamento, vengono utilizzati sistemi di manutenzione remota per impianti HiProSystem (a seconda del modello). Gli impianti sono dotati di un router, che sarà connesso ad internet dal cliente. In caso di malfunzionamento, Nabertherm è in grado di accedere ai comandi del forno tramite una connessione protetta (tunnel VPN) ed eseguire una diagnosi di malfunzionamento. Nella maggior parte dei casi, il problema può essere risolto direttamente da un tecnico in loco con la supervisione di Nabertherm.

Se non è disponibile una connessione Internet, offriamo opzionalmente la manutenzione remota tramite rete LTE come equipaggiamento aggiuntivo...

H1700 con visualizzazione in forma tabellare, a colori

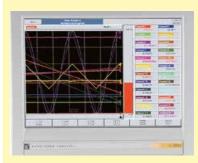
H3700 con visualizzazione grafica

Router per manutenzione remota

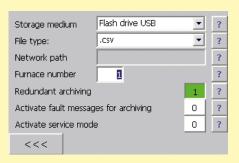
Archiviazione dei dati di processo

Sono disponibili le seguenti opzioni per la documentazione dei processi industriali e la registrazione dei dati di diversi forni. Questi possono essere utilizzati per documentare i dati di processo per i controlli PLC.

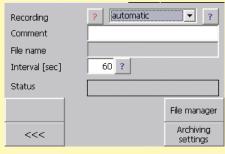
NTLog Comfort per la registrazione dei dati di una regolazione PLC Siemens tramite chiavetta USB


Memorizzazione dati da HiProSystem con NTLog Comfort

Il modulo di espansione NTLog Comfort offre una funzionalità simile al modulo NTLog Basic. I dati di processo vengono letti da un sistema di Controllo HiProSystems e salvati in tempo reale su una penna USB. Il modulo di espansione NTLog Comfort può inoltre essere collegato con connessione Ethernet a un computer presente nella stessa rete locale in modo da registrare i dati direttamente sul computer.


Termografo

Oltre alla documentazione mediante software collegato al sistema di regolazione, Nabertherm offre vari termografi che vengono utilizzati a seconda della rispettiva applicazione.


	Modello 6100e	Modello 6100a	Modello 6180a
Inserimento su touchscreen	Х	Х	Х
Dimensione del display a colori in pollici	5,5"	5,5"	12,1"
Numeri degli ingressi max. per termocoppie	3	18	48
Lettura dei dati tramite pennino USB	Х	X	X
Inserimento di dati della carica		X	Х
Software di analisi fornito in dotazione	Х	X	X
Utilizzabile per misurazioni TUS secondo AMS2750G			Χ

Termografo

NTLog Comfort - Registrazione dati tramite chiavetta USB

NTLog Comfort - Registrazione dati online su PC

Nabertherm Control Center - NCC

Software di comando e di visualizzazione e documentazione di processo basato su PC

Il Nabertherm Control Center è un comando per forni assistito da PC, ed è l'espansione ideale per i forni con regolazione a PLC HiProSystem. Il sistema ha già dimostrato tutta la sua efficacia in numerose applicazioni con elevati requisiti in merito alla documentazione e alla sicurezza di processo, ed anche per la comoda gestione di più forni. Molti clienti dell'industria automobilistica, aeronautica e medicale o anche della produzione di ceramica tecnica lavorano con successo con questo potente software.

Forno a storte NR 300/08 per il trattamento in alto vuoto

Forno a storta NR 80/11 con sistema di sicurezza IDB per il deceraggio con gas inerti non infiammabili

Versione base


- Gestione centrale del forno
- Panoramica grafica di fino a 8 forni
- Semplicità di inserimento nel programma sotto forma di tabella (100 spazi di programma)
- Gestione delle cariche (articolo, quantità, informazioni supplementari)
- Collegamento alla rete aziendale
- Possibilità di impostazione dei diritti di accesso
- Monitoraggio online dei trattamenti termici
- Documentazione a prova di manomissione
- Elenco dei messaggi di errore, adeguato al modello di forno
- Funzione di archivio
- Fornitura comprensiva di PC e stampante
- Calibrazione percorsi di misurazione per fino a 18 temperature per ciascun punto di misurazione. In caso di requisiti normativi è possibile effettuare la calibrazione su più livelli

Dotazione aggiuntiva

- Lettura dei dati della carica mediante codice a barre
 - Facile rilevamento dei dati, ideale in caso di frequenti variazioni della carica
 - Garanzia di qualità dei dati grazie ai dati definiti della carica
- Inserimento della ricetta con modifica della carica
 - Modifica della carica e della ricetta per aumentare la sicurezza dei processi
- Diritti di accesso modificabili, oppure diritti di accesso mediante carte dipendenti
- Possibilità di realizzare espansioni del software con documentazione anche secondo i requisiti di AMS2750G (NADCAP), CQI9 o anche della Food and Drug Administration (FDA), Part 11, EGV 1642/03
- Interfaccia di collegamento ai sistemi sovraordinati
- Collegamento a SQL
- Salvataggio ridondante dei dati
- Collegamento di rete o tramite rete mobile per l'invio di messaggi SMS, ad es. in caso di guasti
- Gestione di diverse postazioni di lavoro PC
- Esecuzione sotto forma di PC industriale o di macchina virtuale
- Armadio PC
- UPS per PC
- Personalizzabile secondo i requisiti del cliente

Panoramica dell'impianto

Vista generale del forno

Calibrazione percorsi di misurazione

Ricambi e assistenza clienti — Il nostro servizio fa la differenza

Da molti anni il nome **Nabertherm** è sinonimo di alta qualità e durata nella produzione di forni. Per garantire questa posizione anche per il futuro, Nabertherm offre ai nostri clienti non solo un servizio di ricambi di prima classe, ma anche un eccellente servizio clienti. Approfitta di oltre 75 anni di esperienza nella costruzione di forni.

Oltre ai nostri tecnici di assistenza in loco altamente qualificati, i nostri specialisti dell'assistenza a Lilienthal sono disponibili anche per rispondere alle vostre domande sul vostro forno. Ci prendiamo cura delle tue esigenze di servizio per mantenere il tuo forno sempre attivo e funzionante. Oltre alle parti di ricambio e alle riparazioni, i controlli d i manutenzione e sicurezza e le misure di uniformità della temperatura fanno parte del nostro portafoglio di servizi. La nostra gamma di servizi include anche la modernizzazione di vecchi sistemi di forni o nuovi rivestimenti.

Le esigenze dei nostri clienti hanno sempre la massima priorità!

- Fornitura molto veloce di pezzi di ricambio molti pezzi di ricambio standard disponibili
- Assistenza clienti in tutto il mondo in loco con propri service point nei maggiori mercati
- Rete di servizi internazionali con partner a lungo termine
- Team di assistenza clienti altamente qualificato per la riparazione rapida e affidabile del vostro forno
- Messa in servizio di complessi sistemi di forni
- Formazione del cliente sulla funzione e funzionamento del sistema
- Misurazioni di uniformità della temperatura, anche secondo standard come AMS2750G (NADCAP)
- Team di assistenza competente per un rapido aiuto al telefono
- Tele-servizio sicuro per sistemi con controlli PLC tramite linea VPN protetta
- Manutenzione preventiva per garantire che il forno sia pronto per l'uso
- Modernizzazione o nuovi isolamenti di vecchi sistemi di forni

Contattaci:

Pezzi di ricambio

 \bowtie

spares@nabertherm.de

+49 (4298) 922-0

service@nabertherm.de

Laboratorio

- Arts & Crafts

- Dentale

Additive manufacturing

Materiali avanzati

Fibre ottiche/vetro

Sede centrale

Nabertherm GmbH Bahnhofstr. 20 28865 Lilienthal, Germania Tel +49 4298 922 0 contact@nabertherm.de

Organizzazione di vendita

Cina

Nabertherm Ltd. (Shanghai)
No. 158, Lane 150, Pingbei Road, Minhang District
201109 Shanghai, Cina
Tel +86 21 64902960
contact@nabertherm-cn.com

Francia

Nabertherm SARL 20, Rue du Cap Vert 21800 Quetigny, Francia Tel +33 6 08318554 contact@nabertherm.fr

Gran Bretagna

Nabertherm Ltd., Regno Unito Tel +44 7508 015919 contact@nabertherm.com

Italia

Nabertherm Italia via Trento N° 17 50139 Florence, Italia Tel +39 348 3820278 contact@nabertherm.it

Svizzera

Nabertherm Schweiz AG Altgraben 31 Nord 4624 Härkingen, Svizzera Tel +41 62 209 6070 contact@nabertherm.ch

Benelux

Nabertherm Benelux, Paesi Bassi Tel +31 6 284 00080 contact@nabertherm.com

Spagna

Nabertherm España c/Marti i Julià, 8 Bajos 7ª 08940 Cornellà de Llobregat, Spagna Tel +34 93 4744716 contact@nabertherm.es

USA

Nabertherm Inc. 64 Reads Way New Castle, DE 19720, USA Tel +1 302 322 3665 contact@nabertherm.com

Tutti gli altri paesi: segue
https://www.nabertherm.com/contacts